版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省南通如皋市高三六校第一次聯(lián)考數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則的值為()A.2 B.3 C.4 D.2.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.3.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種5.設(shè)直線過點(diǎn),且與圓:相切于點(diǎn),那么()A. B.3 C. D.16.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.08.設(shè)集合,,若集合中有且僅有2個(gè)元素,則實(shí)數(shù)的取值范圍為A. B.C. D.9.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.10.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或11.已知向量,則向量在向量方向上的投影為()A. B. C. D.12.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.14.已知拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,直線與交于,兩點(diǎn),若,則實(shí)數(shù)__________.15.如圖所示,點(diǎn),B均在拋物線上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.16.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時(shí),游戲停止,記得分的概率和為.①求;②當(dāng)時(shí),記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實(shí)數(shù)、、滿足,求證:.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.20.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.21.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對(duì)邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.22.(10分)以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動(dòng)點(diǎn),,點(diǎn)的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時(shí),求直線的普通方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,又和的圖象都關(guān)于對(duì)稱,由,得,,即,又,.故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對(duì)稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對(duì)選項(xiàng)逐個(gè)判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對(duì)稱;在,上單調(diào)遞增,且在時(shí)使得;又,,所以選項(xiàng)成立;,比離對(duì)稱軸遠(yuǎn),可得,選項(xiàng)成立;,,可知比離對(duì)稱軸遠(yuǎn),選項(xiàng)成立;,符號(hào)不定,,無法比較大小,不一定成立.故選:.【點(diǎn)睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.3、B【解析】
設(shè),則,可得,即可得到,進(jìn)而找到對(duì)應(yīng)的點(diǎn)所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為,在第二象限.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.4、B【解析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點(diǎn)睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于??碱}型.5、B【解析】
過點(diǎn)的直線與圓:相切于點(diǎn),可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點(diǎn)的直線與圓:相切于點(diǎn),∴;∴;故選:B.【點(diǎn)睛】本小題主要考查向量數(shù)量積的計(jì)算,考查圓的方程,屬于基礎(chǔ)題.6、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.7、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最??;當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.8、B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點(diǎn)睛】本題主要考查了集合的關(guān)系及運(yùn)算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】
可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.11、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.12、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個(gè),由此能求出其和等于11的概率.【詳解】解:從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個(gè),其和等于的概率.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來全排列,同時(shí)它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14、【解析】
由于直線過拋物線的焦點(diǎn),因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對(duì)稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點(diǎn),,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因?yàn)?,所以.因?yàn)椋?,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對(duì)稱性還有滿足題意.,綜上,.【點(diǎn)睛】本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)弦問題,掌握拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離與它到距離聯(lián)系起來是解題關(guān)鍵.15、【解析】
設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點(diǎn)睛】本題考查拋物線的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.16、【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個(gè)三角形面積是,由對(duì)稱性可知該六面是由兩個(gè)正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),由于圖像的對(duì)稱性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點(diǎn)睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計(jì)算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對(duì)應(yīng)的概率,進(jìn)而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進(jìn)而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時(shí),,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進(jìn)而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時(shí),有,則時(shí),,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于中檔題.18、(1)(2)證明見解析【解析】
(1)采用零點(diǎn)分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對(duì)值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時(shí)取等號(hào),∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時(shí)取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時(shí)取“”)【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對(duì)值不等式解法:零點(diǎn)分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時(shí),注意說明取等號(hào)的條件.19、(1)見解析(2)見解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)?,,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)?,所以,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對(duì)值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時(shí),,當(dāng),,當(dāng)時(shí),,所以解法二:(1)如圖當(dāng)時(shí),解法三:(1)當(dāng)且僅當(dāng)即時(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度工業(yè)廠房交易全程服務(wù)合同4篇
- 2024音樂制作方與影視制作公司版權(quán)許可合同
- 二零二五年度交通樞紐害蟲防治與消毒作業(yè)合同3篇
- 專業(yè)水電安裝及消防系統(tǒng)承包合同2024年版版B版
- 2025年度12年首次智慧旅游項(xiàng)目合作協(xié)議3篇
- 2025年度叉車租賃合同范本(叉車租賃與維護(hù))4篇
- 2025年度智慧城市基礎(chǔ)設(shè)施場(chǎng)地平整與物聯(lián)網(wǎng)協(xié)議4篇
- 2025年度奶牛養(yǎng)殖牛場(chǎng)租賃合同范本3篇
- 2025年廠房租賃合同風(fēng)險(xiǎn)評(píng)估與管理規(guī)范4篇
- 2024年04月廣西桂林銀行南寧分行社會(huì)招考筆試歷年參考題庫附帶答案詳解
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 足球訓(xùn)練基地管理制度
- 太平洋藍(lán)鯨計(jì)劃制度和基本法
- (承諾書)安防監(jiān)控售后服務(wù)承諾書范文
- 高低溫交變濕熱試驗(yàn)檢測(cè)報(bào)告
- 蘇教版四年級(jí)數(shù)學(xué)下冊(cè)《全冊(cè)》完整課件ppt
- 《高一地理必修一全套課件》
- 新點(diǎn)軟件算量基礎(chǔ)知識(shí)內(nèi)部培訓(xùn)講義
- 幼兒園學(xué)前-《拍蚊子》教學(xué)課件設(shè)計(jì)
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)三 APP的品牌建立與價(jià)值提供
- 北師大版三年級(jí)數(shù)學(xué)上冊(cè)《總復(fù)習(xí)》教案及教學(xué)反思
評(píng)論
0/150
提交評(píng)論