2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷含解析_第1頁
2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷含解析_第2頁
2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷含解析_第3頁
2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷含解析_第4頁
2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省湛江市第一中學(xué)高考數(shù)學(xué)必刷試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知變量,滿足不等式組,則的最小值為()A. B. C. D.2.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-23.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺4.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.45.已知向量,(其中為實數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.7.已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.8.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.當(dāng)時,函數(shù)的圖象大致是()A. B.C. D.10.在平面直角坐標(biāo)系中,經(jīng)過點,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.12.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交二、填空題:本題共4小題,每小題5分,共20分。13.已知,,求____________.14.設(shè)為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.15.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.18.(12分)在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.女生男生總計獲獎不獲獎總計附表及公式:其中,.19.(12分)已知,均為正項數(shù)列,其前項和分別為,,且,,,當(dāng),時,,.(1)求數(shù)列,的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.21.(12分)已知正實數(shù)滿足.(1)求的最小值.(2)證明:22.(10分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.2、B【解析】

通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.3、A【解析】

根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.4、B【解析】

根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.5、A【解析】

結(jié)合向量垂直的坐標(biāo)表示,將兩個條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎(chǔ)知識;考查運算求解能力,推理論證能力,應(yīng)用意識.6、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.7、C【解析】

將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.8、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.9、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.10、B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】

觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。12、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運算可計算出結(jié)果.【詳解】,,,因此,.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標(biāo)運算,考查計算能力,屬于基礎(chǔ)題.14、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質(zhì).【名師點睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學(xué)生等價轉(zhuǎn)化的思想與方程思想.15、10【解析】

根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.16、【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當(dāng)直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當(dāng)時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.18、(Ⅰ),;(Ⅱ)詳見解析.【解析】

(Ⅰ)根據(jù)概率的性質(zhì)知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,從而可得列聯(lián)表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,列聯(lián)表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認(rèn)為“獲獎與女生,男生有關(guān).”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數(shù)的問題,熟記獨立性檢驗的思想,以及平均數(shù)的計算方法即可,屬于常考題型.19、(1),(2)【解析】

(1),所,兩式相減,即可得到數(shù)列遞推關(guān)系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數(shù)列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當(dāng)時,,解得,所以數(shù)列是首項和公比均為的等比數(shù)列,即,因為,整理得,又因為,所以,所以,即,因為,所以數(shù)列是以首項和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數(shù)列的通項公式,以及數(shù)列求和,關(guān)鍵在于對題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項求和作為一類常用的求和方法,需要在平常的學(xué)習(xí)中多做積累常見的裂項方式.20、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】

(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.21、(1);(2)見解析【解析】

(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論