江南大學(xué)《人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江南大學(xué)《人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江南大學(xué)《人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江南大學(xué)《人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江南大學(xué)《人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁江南大學(xué)《人工智能》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對(duì)多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別2、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個(gè)企業(yè)要部署智能客服系統(tǒng)。以下關(guān)于智能客服的描述,哪一項(xiàng)是不正確的?()A.能夠快速回答常見問題,提高客戶服務(wù)的響應(yīng)速度B.可以通過不斷學(xué)習(xí)和優(yōu)化,提高回答的準(zhǔn)確性和滿意度C.智能客服能夠完全理解客戶的復(fù)雜情感和意圖,提供個(gè)性化的服務(wù)D.與人工客服相結(jié)合,可以提供更優(yōu)質(zhì)的客戶服務(wù)體驗(yàn)3、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競(jìng)爭(zhēng),共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成4、人工智能中的語音識(shí)別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號(hào)的采樣率D.采用噪聲抑制技術(shù)5、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個(gè)用于圖像識(shí)別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強(qiáng)可以通過旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對(duì)模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進(jìn)行模型訓(xùn)練6、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個(gè)醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測(cè)疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場(chǎng)景中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測(cè)B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過與環(huán)境的交互和獎(jiǎng)勵(lì)機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗(yàn)和判斷,不需要人工干預(yù)7、在人工智能的模型評(píng)估中,假設(shè)已經(jīng)有了訓(xùn)練集、驗(yàn)證集和測(cè)試集。以下關(guān)于使用這些數(shù)據(jù)集的方法,哪一項(xiàng)是不正確的?()A.在訓(xùn)練集上訓(xùn)練模型,在驗(yàn)證集上調(diào)整超參數(shù),在測(cè)試集上評(píng)估最終模型的性能B.將訓(xùn)練集、驗(yàn)證集和測(cè)試集混合在一起進(jìn)行訓(xùn)練,以增加數(shù)據(jù)量C.只在訓(xùn)練集上訓(xùn)練模型,然后直接在測(cè)試集上評(píng)估性能D.多次使用測(cè)試集來評(píng)估模型,以確保結(jié)果的可靠性8、當(dāng)利用人工智能進(jìn)行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是9、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況并預(yù)測(cè)病蟲害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是10、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個(gè)基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準(zhǔn)確診斷所有疾病,無需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗(yàn)和判斷,因?yàn)槿斯ぶ悄芩惴ǜ泳_C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專業(yè)知識(shí)和臨床經(jīng)驗(yàn)仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準(zhǔn)確性不受數(shù)據(jù)質(zhì)量和多樣性的影響11、在人工智能的圖像生成領(lǐng)域,例如生成逼真的藝術(shù)作品或虛擬場(chǎng)景,以下哪種技術(shù)的發(fā)展起到了關(guān)鍵作用?()A.生成對(duì)抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.玻爾茲曼機(jī)12、在人工智能的機(jī)器人控制領(lǐng)域,強(qiáng)化學(xué)習(xí)可以讓機(jī)器人通過與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個(gè)機(jī)器人需要學(xué)會(huì)在不同地形上行走,以下哪個(gè)因素對(duì)于強(qiáng)化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機(jī)器人的初始狀態(tài)C.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)D.機(jī)器人的硬件性能13、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個(gè)能夠自動(dòng)回答用戶問題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識(shí)別14、人工智能在教育領(lǐng)域的應(yīng)用有望實(shí)現(xiàn)個(gè)性化學(xué)習(xí)和智能輔導(dǎo)。假設(shè)一個(gè)在線學(xué)習(xí)平臺(tái)使用人工智能為學(xué)生提供個(gè)性化課程推薦,以下關(guān)于教育領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全根據(jù)學(xué)生的學(xué)習(xí)成績(jī)來推薦課程,無需考慮其他因素B.學(xué)生的學(xué)習(xí)習(xí)慣、興趣和知識(shí)水平等因素都應(yīng)該被納入人工智能的課程推薦模型中C.人工智能在教育領(lǐng)域的應(yīng)用可能會(huì)導(dǎo)致學(xué)生過度依賴技術(shù),降低自主學(xué)習(xí)能力D.教育領(lǐng)域的人工智能應(yīng)用不需要考慮教育倫理和學(xué)生隱私保護(hù)問題15、在人工智能的自然語言處理領(lǐng)域中,當(dāng)需要開發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類語言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語義理解D.語用分析16、在人工智能的自然語言生成任務(wù)中,如何生成連貫、有邏輯的文本是一個(gè)挑戰(zhàn)。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)撰寫新聞報(bào)道的系統(tǒng),需要考慮文章的結(jié)構(gòu)、語法和語義的一致性。以下哪種方法或技術(shù)在提高文本生成質(zhì)量方面最為關(guān)鍵?()A.預(yù)訓(xùn)練語言模型B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)機(jī)制C.語法規(guī)則約束D.以上方法結(jié)合使用17、在人工智能的圖像生成領(lǐng)域,生成對(duì)抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫作,同時(shí)具有獨(dú)特的風(fēng)格和創(chuàng)造力。以下哪種改進(jìn)的GAN架構(gòu)或訓(xùn)練方法能夠更好地實(shí)現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用18、知識(shí)圖譜是人工智能的重要技術(shù)之一。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的描述,哪一項(xiàng)是不正確的?()A.知識(shí)圖譜可以整合各種來源的歷史信息,形成結(jié)構(gòu)化的知識(shí)表示B.實(shí)體識(shí)別和關(guān)系抽取是構(gòu)建知識(shí)圖譜的關(guān)鍵步驟C.知識(shí)圖譜可以通過推理和查詢,回答關(guān)于歷史事件的復(fù)雜問題D.一旦構(gòu)建完成,知識(shí)圖譜不需要更新和維護(hù),就能始終提供準(zhǔn)確的信息19、在人工智能的自然語言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望20、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實(shí)現(xiàn)多個(gè)參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機(jī)構(gòu)之間難以流通和共享的問題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險(xiǎn)21、在人工智能的發(fā)展過程中,倫理原則的制定至關(guān)重要。假設(shè)要制定人工智能倫理原則,以下關(guān)于其制定的描述,哪一項(xiàng)是不正確的?()A.應(yīng)考慮公平、公正、透明、可解釋等原則,保障公眾利益B.倫理原則應(yīng)隨著技術(shù)的發(fā)展和應(yīng)用不斷更新和完善C.制定倫理原則只需考慮技術(shù)層面的問題,無需考慮社會(huì)和文化因素D.廣泛征求各界意見,確保倫理原則的合理性和可行性22、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于醫(yī)療診斷的人工智能模型,以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不正確的?()A.解釋模型的決策過程和依據(jù),有助于提高醫(yī)生對(duì)診斷結(jié)果的信任度B.特征重要性分析可以幫助理解哪些輸入特征對(duì)診斷結(jié)果影響較大C.深度學(xué)習(xí)模型由于其復(fù)雜性,無法進(jìn)行任何形式的解釋D.開發(fā)具有可解釋性的人工智能模型對(duì)于醫(yī)療等關(guān)鍵領(lǐng)域至關(guān)重要23、在人工智能的發(fā)展過程中,算法的創(chuàng)新起著關(guān)鍵作用。假設(shè)我們要設(shè)計(jì)一種新的人工智能算法,以下關(guān)于算法設(shè)計(jì)的原則,哪一項(xiàng)是不正確的?()A.高效性B.可擴(kuò)展性C.復(fù)雜性優(yōu)先D.創(chuàng)新性24、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計(jì)算量。假設(shè)要在移動(dòng)設(shè)備上部署一個(gè)深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上都有可能25、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢(shì)是?()A.對(duì)姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性26、在人工智能的計(jì)算機(jī)視覺任務(wù)中,目標(biāo)跟蹤是一個(gè)具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個(gè)在人群中移動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響27、深度學(xué)習(xí)作為一種強(qiáng)大的人工智能技術(shù),在圖像識(shí)別領(lǐng)域取得了顯著成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于深度學(xué)習(xí)在該任務(wù)中的描述,哪一項(xiàng)是不正確的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)常用于圖像特征提取和分類,能有效識(shí)別動(dòng)物圖像B.深度神經(jīng)網(wǎng)絡(luò)需要大量的標(biāo)注圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.通過調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以優(yōu)化圖像識(shí)別模型的性能D.深度學(xué)習(xí)模型一旦訓(xùn)練完成,就無需再進(jìn)行優(yōu)化和改進(jìn),能夠始終保持高精度28、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于預(yù)測(cè)股票價(jià)格的人工智能模型,但用戶對(duì)模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測(cè)的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量29、在人工智能的異常檢測(cè)任務(wù)中,例如檢測(cè)網(wǎng)絡(luò)中的異常流量或金融交易中的欺詐行為。假設(shè)正常數(shù)據(jù)的模式較為復(fù)雜,而異常數(shù)據(jù)相對(duì)較少且具有多樣性。以下哪種方法在這種情況下更適合進(jìn)行異常檢測(cè)?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.無監(jiān)督學(xué)習(xí)方法,自動(dòng)發(fā)現(xiàn)異常模式C.監(jiān)督學(xué)習(xí)方法,使用有標(biāo)注的異常數(shù)據(jù)進(jìn)行訓(xùn)練D.人工檢查所有數(shù)據(jù),識(shí)別異常30、在人工智能的智能推薦系統(tǒng)中,冷啟動(dòng)問題是指在新用戶或新物品加入時(shí)缺乏足夠的歷史數(shù)據(jù)進(jìn)行準(zhǔn)確推薦。假設(shè)要解決一個(gè)新上線電商平臺(tái)的冷啟動(dòng)問題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門商品的推薦C.基于用戶社交關(guān)系的推薦D.以上策略結(jié)合使用二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用Python的Keras庫,構(gòu)建一個(gè)長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)來預(yù)測(cè)某城市未來一周的空氣質(zhì)量指數(shù)。收集相關(guān)的氣象和污染數(shù)據(jù),進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化處理,設(shè)置合適的超參數(shù),如隱藏層單元數(shù)量和學(xué)習(xí)率,評(píng)估模型的預(yù)測(cè)效果。2、(本題5分)利用Python的Keras庫,構(gòu)建一個(gè)基于強(qiáng)化學(xué)習(xí)的智能倉儲(chǔ)管理模型。優(yōu)化貨物的存儲(chǔ)位置和出庫順序,提高倉儲(chǔ)效率。3、(本題5分)使用Python的Scikit-learn庫,應(yīng)用決策樹算法對(duì)一個(gè)包含客戶消費(fèi)行為數(shù)據(jù)的數(shù)據(jù)集進(jìn)行分析,預(yù)測(cè)客戶是否會(huì)購買某一特定產(chǎn)品。通過調(diào)整決策樹的參數(shù),優(yōu)化模型的性能。4、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于膠囊網(wǎng)絡(luò)(CapsNet)的圖像識(shí)別模型,對(duì)復(fù)雜場(chǎng)景中的物體進(jìn)行準(zhǔn)確識(shí)別。比較CapsNet與傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)在處理變形、遮擋和多視角物體時(shí)的性能差異,評(píng)估模型的魯棒性和泛化能力。5、(本題5分)使用Python的Scikit-learn庫,實(shí)現(xiàn)高斯過程回歸算法對(duì)非線性數(shù)據(jù)進(jìn)行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論