新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題08 數(shù)列(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題08 數(shù)列(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題08 數(shù)列(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題08 數(shù)列(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題08 數(shù)列(解析版)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題08數(shù)列小題綜合一、單選題1.(2023·浙江寧波·鎮(zhèn)海中學(xué)??寄M預(yù)測(cè))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】A【分析】首先根據(jù)遞推公式,求數(shù)列中的項(xiàng),并得到數(shù)列的周期,再求SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然,接下去SKIPIF1<0,所以數(shù)列SKIPIF1<0是以3為周期的周期數(shù)列,則SKIPIF1<0.故選:A.2.(2023·浙江溫州·樂清市知臨中學(xué)??寄M預(yù)測(cè))已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,公比為q,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由條件結(jié)合等比數(shù)列通項(xiàng)公式列方程求SKIPIF1<0即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,A錯(cuò)誤,C錯(cuò)誤,D正確,所以SKIPIF1<0,B錯(cuò)誤;故選:D.3.(2023·浙江嘉興·統(tǒng)考模擬預(yù)測(cè))數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】判斷出數(shù)列SKIPIF1<0是等比數(shù)列,進(jìn)而判斷出數(shù)列SKIPIF1<0是等比數(shù)列,從而求得數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.【詳解】依題意,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,兩式相減得SKIPIF1<0,SKIPIF1<0也符合上式,所以SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是等比數(shù)列,首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0.所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.故選:D4.(2023·浙江·高三專題練習(xí))已知公差不為零的等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0成等比數(shù)列,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)條件列出關(guān)于等差數(shù)列基本量的方程組,即可求解.【詳解】設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A5.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)校聯(lián)考階段練習(xí))已知等差數(shù)列SKIPIF1<0的公差為d,前n項(xiàng)和為SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【分析】利用等差數(shù)列的前SKIPIF1<0項(xiàng)公式,分別從充分性和必要性兩個(gè)方面進(jìn)行判斷即可求解.【詳解】因?yàn)閿?shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,若等差數(shù)列SKIPIF1<0的公差SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故充分性成立;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故必要性成立,所以“SKIPIF1<0”是“SKIPIF1<0”的充分必要條件,故選:C.6.(2023·浙江·高三專題練習(xí))已知SKIPIF1<0是公差不為0的等差數(shù)列,SKIPIF1<0,若SKIPIF1<0成等比數(shù)列,則SKIPIF1<0(

)A.2023 B.2024 C.4046 D.4048【答案】B【分析】根據(jù)SKIPIF1<0成等比數(shù)列列方程,得到SKIPIF1<0,再計(jì)算SKIPIF1<0即可.【詳解】設(shè)數(shù)列SKIPIF1<0的公差為d,且SKIPIF1<0,若SKIPIF1<0成等比數(shù)列,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,化簡SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.7.(2023·浙江溫州·統(tǒng)考三模)已知數(shù)列SKIPIF1<0各項(xiàng)為正數(shù),SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是等差數(shù)列 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0是等差數(shù)列 D.SKIPIF1<0是等比數(shù)列【答案】C【分析】分析可知數(shù)列SKIPIF1<0的每一項(xiàng)都是正數(shù),由已知條件可得出SKIPIF1<0,結(jié)合等差中項(xiàng)法判斷可得出結(jié)論.【詳解】因?yàn)閿?shù)列SKIPIF1<0各項(xiàng)為正數(shù),SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,故對(duì)任意的SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,數(shù)列SKIPIF1<0的每一項(xiàng)都是正數(shù),所以,SKIPIF1<0,可得SKIPIF1<0,由等差中項(xiàng)法可知,數(shù)列SKIPIF1<0是等差數(shù)列,故選:C.8.(2023·浙江溫州·樂清市知臨中學(xué)校考二模)“楊輝三角”是中國古代重要的數(shù)學(xué)成就,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記SKIPIF1<0為圖中虛線上的數(shù)SKIPIF1<0構(gòu)成的數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng),則SKIPIF1<0的值為(

A.1275 B.1276 C.1270 D.1280【答案】A【分析】根據(jù)題意分析可得SKIPIF1<0,利用累加法運(yùn)算求解.【詳解】由題意可得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A.9.(2023春·浙江寧波·高三校聯(lián)考階段練習(xí))非零實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0成等差數(shù)列,可將SKIPIF1<0用SKIPIF1<0表示,再將所求化簡,利用基本不等式即可得解.【詳解】因?yàn)镾KIPIF1<0成等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.10.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)??茧A段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意化簡可得SKIPIF1<0,根據(jù)SKIPIF1<0,利用累加法可得SKIPIF1<0;根據(jù)SKIPIF1<0,利用累加法計(jì)算化簡可得SKIPIF1<0,進(jìn)而得出SKIPIF1<0,令SKIPIF1<0計(jì)算即可.【詳解】顯然,對(duì)任意SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,化簡可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,累加可得SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,注意到SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.綜上SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:C.二、多選題11.(2023·浙江·高三專題練習(xí))“冰雹猜想”也稱為“角谷猜想”,是指對(duì)于任意一個(gè)正整數(shù)SKIPIF1<0,如果SKIPIF1<0是奇數(shù)?乘以3再加1,如果SKIPIF1<0是偶數(shù)就除以2,這樣經(jīng)過若干次操作后的結(jié)果必為1,猶如冰雹掉落的過程.參照“冰雹猜想”,提出了如下問題:設(shè)SKIPIF1<0,各項(xiàng)均為正整數(shù)的數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0則(

)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0是遞增數(shù)列【答案】ACD【分析】當(dāng)SKIPIF1<0時(shí),結(jié)合條件求出SKIPIF1<0可判斷A,求出SKIPIF1<0可判斷B;由數(shù)學(xué)歸納法可證明C;據(jù)SKIPIF1<0與零的關(guān)系,判斷數(shù)列SKIPIF1<0單調(diào)遞增可判斷D.【詳解】對(duì)于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故A正確;對(duì)于B,當(dāng)SKIPIF1<0時(shí),由A選項(xiàng)知:SKIPIF1<0,故B不正確;對(duì)于C,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0且SKIPIF1<0為偶數(shù),SKIPIF1<0.假設(shè)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,且SKIPIF1<0為偶數(shù);當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.所以若SKIPIF1<0為奇數(shù),則SKIPIF1<0;若SKIPIF1<0為偶數(shù),則SKIPIF1<0.因此對(duì)SKIPIF1<0都有SKIPIF1<0,故C正確;對(duì)于D,當(dāng)SKIPIF1<0為偶數(shù)時(shí),若SKIPIF1<0為奇數(shù),則SKIPIF1<0為奇數(shù).因?yàn)镾KIPIF1<0為奇數(shù),所以歸納可得,對(duì)SKIPIF1<0,SKIPIF1<0均為奇數(shù),則SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0單調(diào)遞增,故D正確.故選:ACD.12.(2023·浙江寧波·鎮(zhèn)海中學(xué)??寄M預(yù)測(cè))定義:若數(shù)列SKIPIF1<0滿足,存在實(shí)數(shù)M,對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則稱M是數(shù)列SKIPIF1<0的一個(gè)上界.現(xiàn)已知SKIPIF1<0為正項(xiàng)遞增數(shù)列,SKIPIF1<0,下列說法正確的是(

)A.若SKIPIF1<0有上界,則SKIPIF1<0一定存在最小的上界B.若SKIPIF1<0有上界,則SKIPIF1<0可能不存在最小的上界C.若SKIPIF1<0無上界,則對(duì)于任意的SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0D.若SKIPIF1<0無上界,則存在SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0【答案】ACD【分析】AB選項(xiàng),由SKIPIF1<0有上界判斷;C.根據(jù)SKIPIF1<0無上界,且為正項(xiàng)遞增數(shù)列,可得SKIPIF1<0判斷;D.用反證法判斷.【詳解】A.若SKIPIF1<0有上界,則SKIPIF1<0一定存在最小的上界,故正確;B.若SKIPIF1<0有上界,則SKIPIF1<0一定存在最小的上界,故錯(cuò)誤;C.若SKIPIF1<0無上界,又SKIPIF1<0為正項(xiàng)遞增數(shù)列,則SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故正確;D.假設(shè)對(duì)任意SKIPIF1<0時(shí),恒有SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,與假設(shè)矛盾,故假設(shè)不成立,所以若SKIPIF1<0無上界,則存在SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,故正確;故選:ACD13.(2023·浙江·校聯(lián)考三模)南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,它的前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,則數(shù)列1,3,6,10被稱為二階等差數(shù)列,現(xiàn)有高階等差數(shù)列SKIPIF1<0?其前7項(xiàng)分別為5,9,17,27,37,45,49,設(shè)通項(xiàng)公式SKIPIF1<0.則下列結(jié)論中正確的是(

)(參考公式:SKIPIF1<0)A.?dāng)?shù)列SKIPIF1<0為二階等差數(shù)列B.?dāng)?shù)列SKIPIF1<0的前11項(xiàng)和最大C.SKIPIF1<0D.SKIPIF1<0【答案】AC【分析】根據(jù)題中定義,結(jié)合累加法、等差數(shù)列前SKIPIF1<0項(xiàng)和公式、題中所給的公式逐一判斷即可.【詳解】設(shè)SKIPIF1<0,所以數(shù)列SKIPIF1<0前6項(xiàng)分別為SKIPIF1<0,設(shè)SKIPIF1<0,所以數(shù)列SKIPIF1<0前5項(xiàng)分別為SKIPIF1<0,顯然數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,由題中定義可知數(shù)列SKIPIF1<0為二階等差數(shù)列,因此選項(xiàng)A正確;SKIPIF1<0,于是有SKIPIF1<0SKIPIF1<0,因此有SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0的前11項(xiàng)和最大不正確,因此選項(xiàng)B不正確;SKIPIF1<0因此選項(xiàng)C正確;SKIPIF1<0,因此選項(xiàng)D不正確;故選:AC【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用累加法,結(jié)合題中定義、所給的公式是解題的關(guān)鍵.14.(2023·浙江·統(tǒng)考二模)已知等差數(shù)列SKIPIF1<0的公差為d,前n項(xiàng)和是SKIPIF1<0,滿足SKIPIF1<0,則(

).A.SKIPIF1<0的最小值為SKIPIF1<0 B.SKIPIF1<0C.滿足SKIPIF1<0的n的最大值為4 D.SKIPIF1<0【答案】BD【分析】根據(jù)遞推公式找出SKIPIF1<0與公差d的關(guān)系,再將選項(xiàng)中對(duì)應(yīng)項(xiàng)或者前n項(xiàng)和全部用SKIPIF1<0表示,構(gòu)造成一個(gè)關(guān)于SKIPIF1<0的函數(shù),根據(jù)函數(shù)對(duì)應(yīng)導(dǎo)數(shù)單調(diào)性找出最值,或者代入特殊值驗(yàn)證選項(xiàng)對(duì)錯(cuò).【詳解】根據(jù)題意可知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,A錯(cuò)誤;SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,B正確;SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C錯(cuò)誤;SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,D正確.故選:BD.【點(diǎn)睛】方法點(diǎn)睛:(1)本題B、D選項(xiàng)求取值范圍,常用方式為構(gòu)造函數(shù)求出最值確定范圍;(2)本題A、C選項(xiàng)為判斷結(jié)論是否正確,最簡單的判斷方式為適當(dāng)舉出反例,當(dāng)然數(shù)學(xué)基礎(chǔ)好的同學(xué)可通過構(gòu)造函數(shù)利用極限思想進(jìn)行判斷.15.(2023·浙江·高三專題練習(xí))定義:若存在正實(shí)數(shù)M使SKIPIF1<0,則稱正數(shù)列SKIPIF1<0為有界正數(shù)列.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和.則(

)A.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列 B.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列C.?dāng)?shù)列SKIPIF1<0為有界正數(shù)列 D.?dāng)?shù)列SKIPIF1<0為有界正數(shù)列【答案】BC【分析】對(duì)于A,設(shè)SKIPIF1<0,求導(dǎo)后放縮為SKIPIF1<0,從而可知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,即可判斷;對(duì)于B,由SKIPIF1<0可知數(shù)列SKIPIF1<0為遞增數(shù)列,即可判斷;對(duì)于C,由A分析,即可判斷;對(duì)于D,借助不等式SKIPIF1<0,從而可得SKIPIF1<0,即可得到SKIPIF1<0,從而可判斷.【詳解】對(duì)于A,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,A錯(cuò)誤;對(duì)于B,因?yàn)镾KIPIF1<0,所以數(shù)列SKIPIF1<0為遞增數(shù)列,B正確;對(duì)于C,由A分析可知,當(dāng)正實(shí)數(shù)M為前6項(xiàng)的最大項(xiàng)時(shí),就有SKIPIF1<0,所以數(shù)列SKIPIF1<0為有界正數(shù)列,C正確;對(duì)于D,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,D錯(cuò)誤.故選:BC【點(diǎn)睛】關(guān)鍵點(diǎn)睛:對(duì)于A,借助不等式SKIPIF1<0進(jìn)行放縮,而對(duì)于C,借助不等式SKIPIF1<0進(jìn)行放縮,從而可利用裂項(xiàng)相消法求和.16.(2023·浙江·校聯(lián)考二模)已知遞增數(shù)列SKIPIF1<0的各項(xiàng)均為正整數(shù),且其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則(

)A.存在公差為1的等差數(shù)列SKIPIF1<0,使得SKIPIF1<0B.存在公比為2的等比數(shù)列SKIPIF1<0,使得SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】ABC【分析】運(yùn)用公式法計(jì)算A,B選項(xiàng),根據(jù)數(shù)列的性質(zhì)推導(dǎo)C,D選項(xiàng).【詳解】對(duì)于A,設(shè)數(shù)列的首項(xiàng)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即當(dāng)?shù)炔顢?shù)列的首項(xiàng)為138,公差為1時(shí),SKIPIF1<0,正確;對(duì)于B,設(shè)首項(xiàng)為SKIPIF1<0,則SKIPIF1<0,正確;對(duì)于C,欲使得SKIPIF1<0盡可能地大,不妨令SKIPIF1<0,則有SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,正確;對(duì)于D,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,比如,SKIPIF1<0,則SKIPIF1<0,D錯(cuò)誤;故選:ABC.【點(diǎn)睛】思路點(diǎn)睛:數(shù)列中與整數(shù)有關(guān)的不等式或方程問題,注意利用整數(shù)的性質(zhì)來處理.17.(2023·浙江金華·浙江金華第一中學(xué)??寄M預(yù)測(cè))已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0滿足SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】A選項(xiàng),先構(gòu)造函數(shù)SKIPIF1<0,并研究其單調(diào)性,利用SKIPIF1<0進(jìn)行放縮,利用數(shù)學(xué)歸納法可證明;B選項(xiàng),構(gòu)造函數(shù)SKIPIF1<0,判斷其單調(diào)性即可;C選項(xiàng),利用數(shù)學(xué)歸納法和假設(shè)法可證明;D選項(xiàng),結(jié)合C選項(xiàng)結(jié)論對(duì)SKIPIF1<0進(jìn)行放縮即可證明.【詳解】設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.用數(shù)學(xué)歸納法下證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0;假設(shè)當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,由于SKIPIF1<0,所以根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增可知SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0.綜上可知,SKIPIF1<0.對(duì)于A,令SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,故A正確.對(duì)于B,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0>0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.故SKIPIF1<0,故選項(xiàng)B錯(cuò)誤;對(duì)于C,可用數(shù)學(xué)歸納法證明:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0成立;假設(shè)當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,若SKIPIF1<0,則由SKIPIF1<0可知SKIPIF1<0,與假設(shè)SKIPIF1<0矛盾,故SKIPIF1<0.故SKIPIF1<0,故C正確.對(duì)于D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,故選項(xiàng)D正確.故選:ACD.【點(diǎn)睛】與數(shù)列相關(guān)的不等式問題證明方法點(diǎn)睛:(1)可以利用數(shù)學(xué)歸納法來進(jìn)行證明;(2)可以構(gòu)造函數(shù),利用導(dǎo)數(shù)進(jìn)行證明,通過求導(dǎo)得到函數(shù)的單調(diào)性并結(jié)合不等式進(jìn)行放縮得到結(jié)果.三、填空題18.(2023秋·浙江紹興·高三期末)設(shè)SKIPIF1<0是首項(xiàng)為1的數(shù)列,且SKIPIF1<0,則SKIPIF1<0___________.【答案】32【分析】由遞推公式SKIPIF1<0可得SKIPIF1<0,已知SKIPIF1<0求SKIPIF1<0,再求SKIPIF1<0.【詳解】SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.故答案為:32.19.(2023·浙江·二模)已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,則公比SKIPIF1<0______.【答案】2【分析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】由SKIPIF1<0,等式兩邊同時(shí)除以SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.故答案為:2.20.(2023·浙江嘉興·校考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,數(shù)列SKIPIF1<0是以1為首項(xiàng),2為公比的等比數(shù)列,則SKIPIF1<0___________.【答案】502【分析】由等差數(shù)列、等比數(shù)列的通項(xiàng)公式可得SKIPIF1<0,再由等比數(shù)列的前n項(xiàng)和公式即可得結(jié)果.【詳解】由題意可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0故答案為:502.21.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))定義:對(duì)于數(shù)列SKIPIF1<0,如果存在常數(shù)SKIPIF1<0,使得對(duì)于任意SKIPIF1<0,都有SKIPIF1<0,成立,則稱數(shù)列SKIPIF1<0為“SKIPIF1<0擺動(dòng)數(shù)列”,SKIPIF1<0稱為數(shù)列SKIPIF1<0的擺動(dòng)值.若SKIPIF1<0,且數(shù)列SKIPIF1<0的擺動(dòng)值為0,則SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【分析】根據(jù)“SKIPIF1<0擺動(dòng)數(shù)列”的定義可得SKIPIF1<0,對(duì)SKIPIF1<0分奇偶即可求解.【詳解】由數(shù)列SKIPIF1<0的擺動(dòng)值為0知SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,即當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<022.(2023·浙江·高三專題練習(xí))已知數(shù)列SKIPIF1<0,其中第一項(xiàng)是SKIPIF1<0,接下來的兩項(xiàng)是SKIPIF1<0,再接下來的三項(xiàng)是SKIPIF1<0,依此類推.將該數(shù)列前SKIPIF1<0項(xiàng)的和記為SKIPIF1<0,則使得SKIPIF1<0成立的最小正整數(shù)SKIPIF1<0的值是______.【答案】SKIPIF1<0【分析】將已知數(shù)列分組,將各組數(shù)據(jù)之和即為數(shù)列SKIPIF1<0,由等差數(shù)列求和公式可求得SKIPIF1<0,由此可得求得數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,結(jié)合SKIPIF1<0,SKIPIF1<0可確定SKIPIF1<0,由此可推導(dǎo)得到SKIPIF1<0,SKIPIF1<0,由此可得結(jié)果.【詳解】將已知數(shù)列分組,每組的第一項(xiàng)均為SKIPIF1<0,即第一組:SKIPIF1<0;第二組:SKIPIF1<0;第三組:SKIPIF1<0;依此類推;將各組數(shù)據(jù)之和記為數(shù)列SKIPIF1<0,則SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;SKIPIF1<0對(duì)應(yīng)SKIPIF1<0中項(xiàng)數(shù)為SKIPIF1<0項(xiàng),即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則使得SKIPIF1<0成立的最小正整數(shù)SKIPIF1<0.故答案為:SKIPIF1<0.23.(2023·浙江金華·統(tǒng)考模擬預(yù)測(cè))數(shù)學(xué)王子高斯在小時(shí)候計(jì)算SKIPIF1<0時(shí),他是這樣計(jì)算的:SKIPIF1<0,共有50組,故和為5050,事實(shí)上,高斯發(fā)現(xiàn)并利用了等差數(shù)列的對(duì)稱性.若函數(shù)SKIPIF1<0圖象關(guān)于SKIPIF1<0對(duì)稱,SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論