西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁西安電子科技大學(xué)《人工智能概論》

2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對(duì)識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像2、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別水果種類的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性3、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是4、在人工智能的文本分類任務(wù)中,類別不平衡是一個(gè)常見的問題。假設(shè)一個(gè)數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時(shí)最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價(jià)敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用5、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過估計(jì)什么來進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)6、自然語言處理是人工智能的重要領(lǐng)域之一,涉及到文本分類、機(jī)器翻譯等多個(gè)任務(wù)。假設(shè)要構(gòu)建一個(gè)能夠自動(dòng)將英語文章翻譯成中文的系統(tǒng),需要考慮語言的語法、語義和上下文等復(fù)雜因素。以下哪種技術(shù)或方法在機(jī)器翻譯中能夠更好地捕捉語言的長距離依賴關(guān)系和語義表示?()A.基于規(guī)則的翻譯方法B.統(tǒng)計(jì)機(jī)器翻譯C.神經(jīng)機(jī)器翻譯(NMT)D.詞袋模型7、在一個(gè)利用人工智能進(jìn)行天氣預(yù)報(bào)的系統(tǒng)中,為了提高預(yù)測的精度和時(shí)效性,以下哪個(gè)因素可能是需要重點(diǎn)關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計(jì)算效率C.模型的融合和集成D.以上都是8、人工智能中的強(qiáng)化學(xué)習(xí)算法在機(jī)器人足球比賽中可以訓(xùn)練機(jī)器人球員的策略。假設(shè)要讓機(jī)器人球隊(duì)在比賽中取得更好的成績,以下哪個(gè)方面是強(qiáng)化學(xué)習(xí)算法需要重點(diǎn)優(yōu)化的?()A.球員的動(dòng)作控制B.團(tuán)隊(duì)的協(xié)作策略C.球場環(huán)境的建模D.對(duì)手行為的預(yù)測9、人工智能在自動(dòng)駕駛領(lǐng)域有著廣闊的應(yīng)用前景。假設(shè)一輛自動(dòng)駕駛汽車在行駛過程中需要做出決策,以下關(guān)于人工智能在自動(dòng)駕駛中的描述,哪一項(xiàng)是不正確的?()A.傳感器數(shù)據(jù)的融合和處理是自動(dòng)駕駛系統(tǒng)做出準(zhǔn)確決策的基礎(chǔ)B.深度學(xué)習(xí)算法可以識(shí)別道路標(biāo)志、行人和其他車輛,輔助駕駛決策C.自動(dòng)駕駛系統(tǒng)能夠在所有復(fù)雜的路況下做出完美無誤的決策,無需人類干預(yù)D.為了確保安全,自動(dòng)駕駛系統(tǒng)需要具備應(yīng)對(duì)突發(fā)情況的能力和冗余機(jī)制10、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)管理中具有潛在應(yīng)用價(jià)值。假設(shè)一家銀行要利用人工智能評(píng)估客戶的信用風(fēng)險(xiǎn),以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以分析客戶的交易記錄、財(cái)務(wù)狀況等多維度數(shù)據(jù),進(jìn)行信用評(píng)估B.深度學(xué)習(xí)模型能夠自動(dòng)提取數(shù)據(jù)中的隱藏特征,提高信用評(píng)估的準(zhǔn)確性C.人工智能評(píng)估的信用結(jié)果可以完全取代傳統(tǒng)的信用評(píng)估方法,無需人工審核D.為了保證評(píng)估的公正性和可靠性,需要對(duì)人工智能模型進(jìn)行定期監(jiān)測和驗(yàn)證11、在人工智能的文本分類任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容12、當(dāng)使用人工智能進(jìn)行疾病診斷時(shí),需要綜合分析患者的各種臨床數(shù)據(jù),如癥狀、檢查結(jié)果、病史等。假設(shè)這些數(shù)據(jù)來源多樣、格式不統(tǒng)一,且存在一定的噪聲和缺失值。在這種情況下,以下哪種方法能夠更有效地處理和利用這些數(shù)據(jù)進(jìn)行準(zhǔn)確的診斷?()A.數(shù)據(jù)清洗和預(yù)處理,去除噪聲和填充缺失值B.直接使用原始數(shù)據(jù)進(jìn)行診斷,不做任何處理C.只選擇部分關(guān)鍵數(shù)據(jù),忽略其他數(shù)據(jù)D.對(duì)數(shù)據(jù)進(jìn)行簡單的統(tǒng)計(jì)分析,不使用機(jī)器學(xué)習(xí)算法13、假設(shè)在一個(gè)智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評(píng)估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識(shí)掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是14、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史人物和事件的知識(shí)圖譜,以下哪種數(shù)據(jù)源對(duì)于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價(jià)值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個(gè)人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞15、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實(shí)圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會(huì)交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨(dú)立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性16、在人工智能的自動(dòng)駕駛感知任務(wù)中,假設(shè)需要同時(shí)處理來自多個(gè)傳感器(如攝像頭、激光雷達(dá)、毫米波雷達(dá))的數(shù)據(jù)。以下哪種融合方式能夠更有效地綜合利用多源信息?()A.早期融合,在特征層面進(jìn)行融合B.中期融合,在決策層面進(jìn)行融合C.晚期融合,在結(jié)果層面進(jìn)行融合D.隨機(jī)選擇一種傳感器的數(shù)據(jù)作為主要依據(jù)17、在人工智能的知識(shí)圖譜構(gòu)建中,例如整合多個(gè)領(lǐng)域的知識(shí)并建立關(guān)聯(lián),以下哪種方法和工具可能是常用的?()A.本體論和語義網(wǎng)技術(shù)B.信息抽取和實(shí)體識(shí)別C.關(guān)系抽取和圖數(shù)據(jù)庫D.以上都是18、人工智能中的智能客服可以回答用戶的各種問題。假設(shè)我們要評(píng)估一個(gè)智能客服的性能,以下關(guān)于評(píng)估指標(biāo)的說法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語言的優(yōu)美程度D.能夠解決問題的復(fù)雜程度19、在人工智能的發(fā)展中,可解釋性是一個(gè)重要的研究方向。假設(shè)一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測結(jié)果準(zhǔn)確就行B.可解釋性只對(duì)研究人員有意義,對(duì)于實(shí)際應(yīng)用中的用戶不重要C.通過特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對(duì)模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無法解釋的黑盒部分20、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個(gè)強(qiáng)大就能生成好的圖像C.GAN可以通過不斷的對(duì)抗訓(xùn)練,學(xué)習(xí)到真實(shí)數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)說明人工智能在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)中的應(yīng)用。2、(本題5分)說明目標(biāo)檢測的方法和挑戰(zhàn)。3、(本題5分)簡述人工智能對(duì)就業(yè)市場的影響。4、(本題5分)說明約束優(yōu)化問題的處理方法。5、(本題5分)談?wù)勅斯ぶ悄苤械哪P驮u(píng)估指標(biāo)。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析一個(gè)基于人工智能的醫(yī)療影像診斷系統(tǒng),探討其如何通過深度學(xué)習(xí)算法識(shí)別疾病特征,并評(píng)估其準(zhǔn)確性和可靠性。2、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能藝術(shù)品鑒定系統(tǒng),探討其如何識(shí)別藝術(shù)品的真?zhèn)魏蛢r(jià)值評(píng)估。3、(本題5分)考察一個(gè)基于人工智能的智能民間藝術(shù)作品市場需求分析系統(tǒng),討論其如何分析市場對(duì)民間藝術(shù)作品的需求。4、(本題5分)研究一個(gè)使用人工智能的智能舞蹈服裝與道具設(shè)計(jì)系統(tǒng),分析其如何設(shè)計(jì)符合舞蹈主題的服裝和道具。5、(本題5分)以某智能民間戲曲文化生態(tài)評(píng)估系統(tǒng)為例,探討人工智能在生態(tài)分析和保護(hù)建議方面的應(yīng)用。四、操作題(本大題共3個(gè)小題,共30分)1、(本題10分)使用Python中的TensorFlow庫,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論