




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣西欽州市第三中學高考仿真卷數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.22.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.3.“哥德巴赫猜想”是近代三大數(shù)學難題之一,其內容是:一個大于2的偶數(shù)都可以寫成兩個質數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學家哥德巴赫提出的,我國數(shù)學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質數(shù)的概率為()A. B. C. D.4.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.5.已知等邊△ABC內接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.26.關于函數(shù)有下述四個結論:()①是偶函數(shù);②在區(qū)間上是單調遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④7.在中,為邊上的中點,且,則()A. B. C. D.8.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.9.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.10.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.11.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.12.若與互為共軛復數(shù),則()A.0 B.3 C.-1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調增區(qū)間為__________.14.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___15.若函數(shù)滿足:①是偶函數(shù);②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.16.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.18.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.19.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.20.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87921.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.22.(10分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調遞增區(qū)間;(2)在中,三內角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.2、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.3、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.4、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5、D【解析】
如圖所示建立直角坐標系,設,則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.6、C【解析】
根據(jù)函數(shù)的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調性、最值和零點,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.7、A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎題.8、A【解析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結合五點法作圖求解.屬于中檔題.9、B【解析】
設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,
,
當且僅當三點共線時,取“=”號,∴的最小值為.
故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.10、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關性質,基礎題.11、B【解析】
由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數(shù)形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結合思想的應用,屬于綜合題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結合的思想方法能夠使問題化難為簡,并迎刃而解.12、C【解析】
計算,由共軛復數(shù)的概念解得即可.【詳解】,又由共軛復數(shù)概念得:,.故選:C【點睛】本題主要考查了復數(shù)的運算,共軛復數(shù)的概念.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調增區(qū)間為:.故答案為:.【點睛】本題考查導數(shù)在函數(shù)單調性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.14、【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結合來解答本題,注意去絕對值時的分類討論化簡15、,【解析】
根據(jù)是偶函數(shù)和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數(shù)的性質,屬于基礎題.16、31【解析】設,可化為,得,,,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關系得到,進而求得數(shù)值;(2)由三角形的三個角的關系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.18、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導數(shù)求得函數(shù)最值即可;(2),導出導函數(shù),問題轉化為在上有解.再用導數(shù)研究的性質可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當時,,設,,當時,,則在上單調遞增,當時,,則在上單調遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導數(shù)的幾何意義,由導數(shù)幾何把問題進行轉化是解題關鍵.本題屬于困難題.19、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調性問題轉化為證明,即證,令,根據(jù)函數(shù)的單調性證明即可.【詳解】(Ⅰ)的定義域為且令,得;令,得在上單調遞增,在上單調遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調遞增,在上單調遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點睛】本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,考查不等式的證明,考查運算求解能力及化歸與轉化思想,關鍵是能夠構造出合適的函數(shù),將問題轉化為函數(shù)最值的求解問題,屬于難題.20、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結合頻率分布表,先求出二聯(lián)表中數(shù)值,再結合公式計算,利用表格數(shù)據(jù)對比判斷即可【詳解】(1)因為男生人數(shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數(shù)為37人,聯(lián)表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【點睛】本題考查分層抽樣,獨立性檢驗,熟記
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第15課《我們不亂扔》教學設計-2024-2025學年一年級道德與法治上冊統(tǒng)編版
- 展覽館裝修合同
- 2025年度建筑企業(yè)農(nóng)民工勞動合同創(chuàng)新模式試點方案
- 2025年度五星級酒店與VIP客人個性化服務協(xié)議
- 2025年度房產(chǎn)贈與與可持續(xù)發(fā)展合同
- 2025年度冷鏈物流貨運損壞賠償協(xié)議書
- 二零二五年度人工智能教育平臺合作協(xié)議中的支付及費用分攤細則
- 2025年度帶寵物友好房屋出租協(xié)議電子版
- 2025年度廣告代理合同解除通知期限與費用結算規(guī)范
- 2025年度報廢車買賣及報廢車輛拆解與環(huán)保設施投資合同
- 《陶瓷工藝技術》課件
- 供電所安全演講
- 深度學習架構創(chuàng)新-深度研究
- 供應鏈韌性提升與風險防范-深度研究
- 基層醫(yī)療衛(wèi)生服務能力提升考核試卷
- 化工原理完整(天大版)課件
- 2025年江蘇連云港市贛榆城市建設發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 砥礪前行決心譜寫華章
- 2025年開學教導處發(fā)言稿(5篇)
- 機電設備安裝旁站監(jiān)理方案
- 2025年度民政局離婚協(xié)議書范本模板官方修訂2篇
評論
0/150
提交評論