




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省撫順市第十九中學(xué)2025屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件2.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.3.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.4.已知向量與向量平行,,且,則()A. B.C. D.5.函數(shù)(或)的圖象大致是()A. B. C. D.6.已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④8.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.9.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.210.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.11.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c12.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.14.已知向量,,則______.15.設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則______________.16.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某動(dòng)漫影視制作公司長期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場和廣大觀眾的一致好評,同時(shí)也為公司贏得豐厚的利潤.該公司年至年的年利潤關(guān)于年份代號的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)).年份年份代號年利潤(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測該公司年(年份代號記為)的年利潤;(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤的實(shí)際值大于由(Ⅰ)中線性回歸方程計(jì)算出該年利潤的估計(jì)值時(shí),稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預(yù)測的該公司年的年利潤視作該年利潤的實(shí)際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級利潤年的概率.參考公式:,.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知集合,,,將的所有子集任意排列,得到一個(gè)有序集合組,其中.記集合中元素的個(gè)數(shù)為,,,規(guī)定空集中元素的個(gè)數(shù)為.當(dāng)時(shí),求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.20.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.22.(10分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力.2、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點(diǎn)評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.3、B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).4、B【解析】
設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點(diǎn)睛】本題考查向量坐標(biāo)的求解,涉及共線向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.5、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢,排除錯(cuò)誤選項(xiàng),得正確結(jié)論.6、D【解析】
將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個(gè)不同的根,先求導(dǎo),可判斷時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過導(dǎo)數(shù)可判斷當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個(gè)不同的根.,所以當(dāng)時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此.設(shè),,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個(gè)解.設(shè)其解為,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù).因?yàn)?,方程在?nèi)有兩個(gè)不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個(gè)數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題7、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)?,最值點(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)椋?,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.8、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.9、B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應(yīng)的的值即可.【詳解】因?yàn)椋?,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.10、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.12、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因?yàn)?,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)椋?,又,,則|,即,所以.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.二、填空題:本題共4小題,每小題5分,共20分。13、x﹣y=0.【解析】
先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.15、【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為16、【解析】
根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),該公司年年利潤的預(yù)測值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進(jìn)而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計(jì)值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計(jì)算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計(jì)數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預(yù)測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計(jì)值分別為、、、、、、、(單位:億元),其中實(shí)際利潤大于相應(yīng)估計(jì)值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機(jī)抽取年,恰有年為級利潤年”的概率為,.【點(diǎn)睛】本題考查利用最小二乘法求回歸直線方程,同時(shí)也考查了古典概型概率的計(jì)算,涉及組合計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.19、;證明見解析.【解析】
當(dāng)時(shí),集合共有個(gè)子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時(shí),集合共有個(gè)子集,所以;①當(dāng)時(shí),,由可知,,此時(shí)令,,,,滿足對任意,都有,且;②假設(shè)當(dāng)時(shí),存在有序集合組滿足題意,且,則當(dāng)時(shí),集合的子集個(gè)數(shù)為個(gè),因?yàn)槭?的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點(diǎn)睛】本題考查集合的自己個(gè)數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.20、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點(diǎn),連,,根據(jù)平行四邊形,可得,進(jìn)而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點(diǎn),連,,由,可得,可得是平行四邊形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025智能設(shè)備評估信息訂閱合同
- 員工結(jié)對幫扶協(xié)議書
- 2025年醫(yī)療健康產(chǎn)業(yè)人才培養(yǎng)與職業(yè)發(fā)展報(bào)告
- 加裝電梯維修協(xié)議書
- 工程法規(guī)2025年考核概念試題
- 叉車使用合同協(xié)議書
- 財(cái)務(wù)分析工具的使用試題及答案
- 2025年工業(yè)互聯(lián)網(wǎng)平臺與AR交互技術(shù)在企業(yè)數(shù)字化轉(zhuǎn)型中的應(yīng)用實(shí)踐報(bào)告
- 商業(yè)權(quán)益保護(hù)協(xié)議書
- 商業(yè)合同終止協(xié)議書
- 2024年高考數(shù)學(xué)答題技巧與模板 不等式相關(guān)解題技巧(基本不等式鏈、權(quán)方和不等式、兩類糖水不等式)(解析版)
- 低壓電涌保護(hù)器(SPD) 第12部分:低壓電源系統(tǒng)的電涌保護(hù)器選擇和使用導(dǎo)則
- 信息技術(shù)與人工智能智慧樹知到期末考試答案章節(jié)答案2024年重慶工業(yè)職業(yè)技術(shù)學(xué)院
- 第六章-數(shù)據(jù)采集技術(shù)課件
- 《人像攝影教程》課件
- 復(fù)綠施工方案
- 2024年貴州黔東南州能源投資有限公司招聘筆試參考題庫含答案解析
- 相鄰關(guān)系知識講座
- 毛澤東著作《實(shí)踐論》
- 人工智能醫(yī)療器械注冊審查指導(dǎo)原則(2022年第8號)
- 《環(huán)境化學(xué)》戴樹桂(第二版)-課后習(xí)題與參考答案
評論
0/150
提交評論