版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第2頁,共2頁浙大城市學院《機器視覺基礎與實踐》
2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺中的常見任務之一。對于圖像分類模型的訓練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學習不同類別的特征B.卷積神經網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色C.模型的訓練過程是不斷調整參數(shù)以最小化預測誤差的過程D.圖像分類模型一旦訓練完成,就無法再對新的類別進行學習和分類2、在計算機視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設要分析一段監(jiān)控視頻中的人員行為,以下關于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復雜的多人交互場景無法進行有效的分析3、計算機視覺中的視覺注意力機制用于聚焦圖像中的重要區(qū)域。以下關于視覺注意力機制的說法,不正確的是()A.視覺注意力機制可以根據(jù)圖像的特征和任務需求動態(tài)地選擇關注的區(qū)域B.注意力機制能夠提高模型的效率和性能,減少對無關信息的處理C.視覺注意力機制在圖像分類、目標檢測和圖像生成等任務中得到了廣泛應用D.視覺注意力機制的引入會增加模型的復雜度和計算量,降低模型的訓練速度4、計算機視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下關于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準確率高B.深度學習中的度量學習方法能夠學習到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響5、在計算機視覺中,深度估計是確定場景中物體距離相機的距離。以下關于深度估計的說法,錯誤的是()A.可以通過立體視覺、結構光或飛行時間等技術來獲取深度信息B.深度學習方法在單目深度估計中取得了顯著進展C.深度估計對于三維重建、虛擬現(xiàn)實和增強現(xiàn)實等應用具有重要意義D.深度估計的結果總是非常精確,不需要進行后處理和優(yōu)化6、計算機視覺中的光流計算用于估計圖像中像素的運動。假設要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法7、在計算機視覺的圖像檢索任務中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關圖像。假設要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內容特征,如顏色、形狀和紋理等,進行相似性度量和檢索B.深度學習模型能夠提取更具語義和判別力的特征,提高圖像檢索的準確性C.圖像檢索的結果只取決于圖像的特征表示,與檢索算法的效率無關D.可以結合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結果8、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析9、計算機視覺中的姿態(tài)估計任務是估計人體或物體在三維空間中的姿態(tài)。假設要估計一個人體模特的姿態(tài)。以下關于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節(jié)角度計算來估計人體姿態(tài)B.深度學習中的卷積神經網(wǎng)絡可以直接預測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強現(xiàn)實等應用中具有重要作用D.姿態(tài)估計的結果總是非常準確,不受人體遮擋和復雜動作的影響10、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設要對醫(yī)學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠實現(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割11、目標檢測是計算機視覺中的重要任務之一,旨在定位和識別圖像中的多個目標。假設我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復雜場景的目標檢測任務,以下哪種技術通常能提供更準確的檢測結果?()A.基于滑動窗口的傳統(tǒng)目標檢測方法B.基于區(qū)域提議的目標檢測算法,如R-CNN系列C.基于回歸的一階段目標檢測算法,如YOLO系列D.基于聚類的目標檢測方法12、在計算機視覺的目標計數(shù)任務中,統(tǒng)計圖像或視頻中目標的數(shù)量。假設要統(tǒng)計一個果園中蘋果的數(shù)量,以下關于目標計數(shù)方法的描述,哪一項是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進行計數(shù)B.利用深度學習中的回歸模型直接預測蘋果的數(shù)量C.目標計數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準確計數(shù)D.結合多視角圖像或視頻序列可以提高目標計數(shù)的準確性13、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質量。假設我們需要在網(wǎng)絡上傳輸大量的圖像,以下哪種圖像壓縮標準能夠在保證較高壓縮比的同時,提供較好的圖像質量?()A.JPEGB.PNGC.GIFD.BMP14、計算機視覺中的場景理解是理解圖像或視頻中的場景內容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現(xiàn)場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義15、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠對球員的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)16、計算機視覺在自動駕駛領域有廣泛的應用。假設一輛自動駕駛汽車需要識別道路上的交通標志,以下關于自動駕駛中的計算機視覺應用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標志識別的準確性B.深度學習模型可以實時處理攝像頭采集的圖像,快速準確地識別交通標志C.除了交通標志識別,計算機視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務D.自動駕駛中的計算機視覺系統(tǒng)完全不需要其他傳感器(如雷達、激光雷達)的輔助,僅依靠圖像信息就能實現(xiàn)安全可靠的駕駛17、在計算機視覺的動作識別任務中,識別視頻中的人物動作。假設要識別一段舞蹈視頻中的動作,以下關于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經網(wǎng)絡,能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別18、在計算機視覺的目標跟蹤任務中,需要持續(xù)跟蹤一個或多個運動目標。假設要跟蹤一個在操場上跑步的人。以下關于目標跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標的相似特征來實現(xiàn)跟蹤B.深度學習中的相關濾波算法能夠快速準確地跟蹤目標,適應目標的外觀變化C.目標跟蹤算法能夠在目標被遮擋或短暫消失后,仍然準確地恢復跟蹤D.無論目標的運動速度和軌跡如何復雜,目標跟蹤算法都能完美地跟蹤19、計算機視覺中的人臉識別技術應用廣泛。假設要在一個門禁系統(tǒng)中實現(xiàn)準確的人臉識別,以下關于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫,并且識別速度快C.深度學習中的卷積神經網(wǎng)絡在人臉識別中能夠學習到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識別系統(tǒng)一旦訓練完成,就不需要更新和優(yōu)化,能夠一直保持高準確率20、計算機視覺在農業(yè)中的應用可以幫助監(jiān)測農作物的生長狀況。假設要通過圖像分析判斷農作物的病蟲害程度,以下關于農業(yè)計算機視覺應用的描述,正確的是:()A.僅依靠農作物的顏色特征就能準確判斷病蟲害的程度B.不同農作物品種和生長階段對病蟲害判斷的影響不大C.結合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農作物的健康狀況D.農業(yè)環(huán)境的復雜性對計算機視覺的應用沒有挑戰(zhàn)21、計算機視覺在自動駕駛領域有重要應用。假設車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓練數(shù)據(jù)中的交通標志種類22、在計算機視覺的圖像檢索任務中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫中找到相似的圖像。假設要構建一個高效的圖像搜索引擎,能夠快速準確地返回相關圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時性能更優(yōu)?()A.基于內容的圖像檢索B.基于文本標注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學習特征的圖像檢索23、在計算機視覺的行人重識別任務中,需要在不同攝像頭拍攝的圖像中識別出同一個行人。假設我們要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下哪種特征和模型能夠提高識別的準確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學習的全局特征和度量學習C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢的特征24、在計算機視覺的三維重建任務中,例如從多視角圖像恢復物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學習的方法25、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,同時保留圖像的細節(jié)和結構。假設我們有一張受到嚴重噪聲污染的醫(yī)學圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時,最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法26、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的邊界優(yōu)化?()A.條件隨機場B.全連接條件隨機場C.深度學習D.以上都是27、在計算機視覺的圖像壓縮任務中,假設要在保證圖像質量的前提下盡可能減小文件大小。以下關于壓縮算法的選擇,哪一項是不正確的?()A.選擇基于變換的壓縮算法,如離散余弦變換(DCT)B.采用無損壓縮算法,確保圖像信息完全不丟失C.只考慮壓縮比,不關心圖像的視覺質量D.根據(jù)圖像的特點和應用需求選擇合適的壓縮算法28、計算機視覺在體育賽事分析中的應用可以提供更深入的比賽洞察。假設要分析一場足球比賽中球員的跑位和傳球模式,以下關于體育賽事計算機視覺應用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結合深度學習和軌跡分析技術可以更有效地挖掘比賽中的關鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結果沒有影響29、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設我們要為一個增強現(xiàn)實應用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結構光的方法C.基于深度學習的單目深度估計方法D.基于飛行時間(ToF)原理的方法30、在計算機視覺的圖像風格遷移任務中,將一張圖像的風格應用到另一張圖像上。假設要將一幅油畫的風格遷移到一張照片上,以下關于圖像風格遷移方法的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 最大子段和算法課程設計
- 小兔飼養(yǎng)課程設計圖
- 2024年山東省建筑安全員-B證考試題庫附答案
- 社會培訓課程設計
- 電子拔河游戲課程設計
- 程序開發(fā)培訓課程設計
- 物流公司課程設計
- 稅務課課程設計范文
- 給鴨子洗澡課程設計
- 最長公共子串課程設計
- 明亞保險經紀人考試題庫答案
- 精心設計“每日一練”探求“輕負高質”練習策略
- 教務處期末考試的工作總結
- 李玫瑾心理撫養(yǎng)兒童人格形成及培養(yǎng)
- 設備維護與故障排除項目設計評估方案
- 2023-2024學年山西省太原市小店區(qū)數(shù)學六上期末質量檢測試題含答案
- 針灸推拿學100512練習題庫與參考答案
- 行車工考試試題
- 《眼鏡學》考試復習重點題庫(含答案)
- 工程合同履約管理
- 小兒頭皮靜脈輸液課件
評論
0/150
提交評論