陜西省育才中學2025屆高三第三次測評數(shù)學試卷含解析_第1頁
陜西省育才中學2025屆高三第三次測評數(shù)學試卷含解析_第2頁
陜西省育才中學2025屆高三第三次測評數(shù)學試卷含解析_第3頁
陜西省育才中學2025屆高三第三次測評數(shù)學試卷含解析_第4頁
陜西省育才中學2025屆高三第三次測評數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省育才中學2025屆高三第三次測評數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.2.下列不等式成立的是()A. B. C. D.3.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.4.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.5.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或6.已知集合,,則A. B.C. D.7.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,28.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.9.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.10.已知,則()A.5 B. C.13 D.11.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或112.若時,,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在上的偶函數(shù)滿足,且,當時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.14.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.15.已知函數(shù),則不等式的解集為____________.16.函數(shù)的值域為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.18.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.19.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質(zhì),健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設(shè)甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設(shè)甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學期望為依據(jù),預測此次促銷活動后健身館每天的營業(yè)額.20.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.21.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.22.(10分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應用,其中解答中熟記三角函數(shù)的圖象變換,合理應用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、D【解析】

根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.【點睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.3、A【解析】

令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.4、C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.5、A【解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:

①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.

故選:A.【點睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.6、D【解析】

因為,,所以,,故選D.7、C【解析】

先求出集合U,再根據(jù)補集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關(guān)鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.8、D【解析】

作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側(cè),與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.9、D【解析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).10、C【解析】

先化簡復數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數(shù)的運算,是基礎(chǔ)題.11、D【解析】

求得直線的斜率,利用曲線的導數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.12、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】

根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,在平面直角坐標系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因為為偶函數(shù)且,所以的周期為.因為時,,所以可作出在區(qū)間上的圖象,而方程的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡圖,可知兩個函數(shù)的圖象在區(qū)間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;【點睛】本題考查函數(shù)的奇偶性、周期性、對稱性的應用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.14、【解析】

利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎(chǔ)題.15、【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.16、【解析】

利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】

(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.18、(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.19、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(jù)(1)結(jié)果求均值.【詳解】解:(1)由題設(shè)知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.20、(1)(2)不存在;詳見解析【解析】

(1)設(shè),,,通過,即為的中點,轉(zhuǎn)化求解,點的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點睛】本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數(shù)學轉(zhuǎn)化思想方法,是中檔題.21、(Ⅰ);(Ⅱ)。【解析】

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數(shù)的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論