版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
CapabilitiesandrisksfromfrontierAI
AdiscussionpaperontheneedforfurtherresearchintoAIrisk
October2023
Acknowledgements
Wewouldliketothanktheexpertreviewpanel,YoshuaBengio,SaraHooker,Arvind
Narayanan,WilliamIsaac,PaulChristiano,IreneSolaiman,AlexanderBabutaandJohnMcDermidfortheirinsightfulcommentsandfeedback.
ThisreportisadiscussionpapertosupporttheAISafetySummit,anddoesnotrepresentapolicypositionofHMGorrepresenttheviewsoftheexpertreviewpanelabove,whoonlyprovidedcommentsforconsideration.
FrontierAI–CapabilitiesandRisks
Contents
Introduction 4
WhatisthecurrentstateoffrontierAIcapabilities? 5
HowfrontierAIworks 5
FrontierAIcanperformmanyeconomicallyusefultasks 7
FrontierAImodelscanbeaugmentedwithtoolstomakethemmoreautonomous 7
FrontierAIcouldbemorecapablethanevaluationsindicate 8
LimitationsoffrontierAI 9
HowmightfrontierAIcapabilitiesimproveinthefuture? 10
RecentAIprogresshasbeenrapid 10
Recentprogresswasdrivenbysystematictrendsincompute,dataandalgorithms 11
Scalinglaws:performanceimprovespredictablywithincreasedcomputeanddata 12
RapidAIprogressislikelytocontinueforseveralyears 14
Advancedgeneral-purposeAIagentsmightbedevelopedinthefuture 15
WhatrisksdofrontierAIpresent? 15
Crosscuttingriskfactors 16
Itisdifficulttodesignsafefrontiermodelsinopen-endeddomains 16
EvaluatingthesafetyoffrontierAIsystemsisanopenchallenge 16
ItmaybedifficulttotrackhowfrontierAIsystemsaredeployedorused 17
AIsafetystandardshavenotyetbeenestablished 18
InsufficientincentivesforAIdeveloperstoinvestintoriskmitigationmeasures 18
TheremaybesignificantconcentrationofmarketpowerinAI 19
Societalharms 19
Degradationoftheinformationenvironment 19
Labourmarketdisruption 20
Bias,FairnessandRepresentationalHarms 21
Misuserisks 22
DualUseSciencerisks 22
Cyber 23
DisinformationandInfluenceOperations 25
Lossofcontrol 25
HumansmightincreasinglyhandovercontroltomisalignedAIsystems 26
FutureAIsystemsmightactivelyreducehumancontrol 26
Conclusion 28
Glossary 29
FrontierAI–CapabilitiesandRisks
4
Introduction
Weareinthemidstofatechnologicalrevolutionthatwillfundamentallyalterthewaywelive,work,andrelatetooneanother.ArtificialIntelligence(AI)promisestotransformnearlyeveryaspectofoureconomyandsociety.Theopportunitiesaretransformational-advancingdrugdiscovery,makingtransportsaferandcleaner,improvingpublicservices,speedingupandimprovingdiagnosisandtreatmentofdiseaseslikecancerandmuchmore.
DevelopmentsinfrontierAIaretransformingproductivityandsoftwareservices,whichwill
multiplytheproductivityofmanyindustriesandsectors.1ThisprogressinfrontierAIinrecentyearshasbeenrapid,andthemostadvancedsystemscanwritetextfluentlyandatlength,
writewell-functioningcodefromnaturallanguageinstructions,makenewapps,scorehighlyonschoolexams,generateconvincingnewsarticles,translatebetweenmanylanguages,
summariselengthydocuments,amongstothercapabilities.Theopportunitiesarevast,andthereisgreatpotentialforincreasingtheproductivityofworkersofallkinds.
However,thesehugeopportunitiescomewithrisksthatcouldthreatenglobalstabilityand
undermineourvalues.Toseizetheopportunities,wemustunderstandandaddresstherisks.AIposesrisksinwaysthatdonotrespectnationalboundaries.Itisimportantthat
governments,academia,businesses,andcivilsocietyworktogethertonavigatetheserisks,
whicharecomplexandhardtopredict,tomitigatethepotentialdangersandensureAIbenefitssociety.
TheUKGovernmentbelievesmoreresearchintoAIriskisneeded.Thisreportexplainswhy.ItdescribesthecurrentstateandkeytrendsrelatingtofrontierAIcapabilities,andthenexploreshowfrontierAIcapabilitiesmightevolveinthefutureandreviewssomekeyrisks.Thereis
significantuncertaintyaroundboththecapabilitiesandrisksfromAI,includingsomeexpertswhobelievethatsomeoftheserisksareoverstated.Thisreportfocusesonevidenceforrisksandconcludesthatdoingfurtherresearchisnecessary.
Thisreportcoversmanyrisks,butwewishtoemphasisethattheoverarchingriskisalossoftrustinandtrustworthinessofthistechnologywhichwouldpermanentlydenyusandfuture
generationsitstransformativepositivebenefits.Indiscussingtheotherrisks,wedosoinordertogalvanizeactiontomitigatethem,suchthatwecancapturethefullbenefitsoffrontierAI.
DefiningAIischallengingasitremainsaquicklyevolvingtechnology.ForthepurposesoftheSummitwedefine“frontierAI”ashighlycapablegeneral-purposeAImodelsthatcanperformawidevarietyoftasksandmatchorexceedthecapabilitiespresentintoday’smostadvanced
models(seeFigure1).2Today,thisprimarilyincludeslargelanguagemodels(LLMs)3suchasthoseunderlyingChatGPT,4Claude,5andBard.6However,itisimportanttonotethat,bothtodayandinthefuture,frontierAIsystemsmaynotbeunderpinnedbyLLMs,andcouldbe
underpinnedbyanothertechnology.
5
Figure1:ScopeoftheAISafetySummit-2023
AlphaGo,AlphaFoldorDALLE3whichcannotperformaswideavarietyoftasks.8
ThelimitedfocusofthisreportmeanswedonotcoverpowerfulnarrowAI7systemslike
TherearealreadyanumberofexistinginternationaleffortsandinitiativeswhichtouchuponthecapabilitiesandrisksoffrontierAI.TheupcomingAISafetySummitwillprovidespacefora
focusedanddeepdiscussiononAIsafetyatthefrontierandwhatfurtheractionneedstobetaken,complementingexistinginitiatives,andthisreportisintendedtobearesourceforall.
Thisreportisbynomeansconclusive;therearemanyrisksweomitandweencouragereaderstoviewitasthestartofaconversation.
WhatisthecurrentstateoffrontierAIcapabilities?
FrontierAIcanperformawidevarietyoftasks,isbeingaugmentedwithtoolsto
enhanceitscapabilities,andisbeingincreasinglyintegratedintosystemsthatcanhaveawideimpactontheeconomyandsociety.Althoughthesemodelsstillhavemajor
limitationssuchastheirfactualityandreliability,theircurrentcapabilitiesare
impressive,maybegreaterthanwehavebeenabletoassess,andhaveappearedfasterthanweexpected.
HowfrontierAIworks
FrontierAIcompaniessuchasOpenAI,DeepMindandAnthropicdeveloplargelanguagemodels(LLMs)suchasGPT-4intwophases:pre-trainingandfine-tuning.
Duringpre-training,anLLM“reads”millionsorbillionsoftextdocuments.9Asitreads,wordbyword,10itpredictswhatwordwillcomenext.Atthestartofpre-trainingitpredictsrandomly,but
6
asitseesmoredataitlearnsfromitsmistakesandimprovesitspredictiveperformance.Oncepre-trainingisover,themodelissignificantlybetterthanhumansatpredictingthenextwordofarandomlychosentextdocument.11
Duringfine-tuning,12thepre-trainedAIisfurthertrainedonhighlycurateddatasets,whicharefocusedonmorespecialisedtasks,orarestructuredtodirectmodelbehaviourinwayswhichareinalignmentwithdevelopervaluesanduserexpectations13
Increasingly,frontierAImodelsaremulti-modal.Inadditiontotext,theycangenerateandprocessotherdatatypessuchasimages,video,andsound.14
Thekeyinputstodevelopmentarecomputationalresources(“compute”15)totrainandrunthemodel,dataforittolearnfrom,thealgorithmsthatdefinethistrainingprocess,andtalentandexpertisethatenableallofthis.16Thevastmajorityofcomputeisspentonpre-training,whichiswhenmostcorecapabilitiesarelearntbyamodel.17
ThetotaldevelopmentcostsforthemostcapablefrontierAImodelstodayrunsintothetensofmillionsofpounds,18withcostsexpectedtosoonreachintothehundredsofmillionsorevenbillionsofpounds.19Whilethebestperformingmodelsaredevelopedbyasmallnumberof
well-resourcedorganisations,alargernumberofsmallerentitiesbuildproductsontopofthesefrontiermodelsforspecificmarkets.20
Thebelowdiagramoutlinestheinputsto,andstagesof,thedevelopmentanddeploymentoffrontierAI.
Figure2.Anoverviewoffoundationmodeldevelopment,traininganddeployment.From
AIFoundationModels:initialreview,
CMA,2023.
7
FrontierAIcanperformmanyeconomicallyusefultasks
Simplyfrombeingtrainedtopredictthenextwordacrossdiversedatasets,modelsdevelopsophisticatedcapabilities.21Forexample,frontierAIcan(withvaryingdegreesofsuccessandreliability):
●Conversefluentlyandatlength,drawingonextensiveinformationcontainedintrainingdata.
●Writelongsequencesofwell-functioningcodefromnaturallanguageinstructions,includingmakingnewapps.22
●Scorehighlyonhigh-schoolandundergraduateexaminationsinmanysubjects.23
●Generateplausiblenewsarticles.24
●Creativelycombineideastogetherfromverydifferentdomains.25
●Explainwhynovelsophisticatedjokesarefunny.26
●Translatebetweenmultiplelanguages.27
●Directtheactivitiesofrobotsviareasoning,planningandmovementcontrol.28
●Analysedatabyplottinggraphsandcalculatingkeyquantities.29
●Answerquestionsaboutimagesthatrequirecommon-sensereasoning.30
●Solvemathsproblemsfromhigh-schoolcompetitions.31
●Summariselengthydocuments.32
Thesecapabilitiesshowpotentialtobeappliedacrossawidearrayofeconomicuse-cases.Inadditiontosomeoftheapplicationsabove,frontierAIhasbeenusedto:
●Improvetheperformanceofleadingconsultantsindevelopinggo-to-marketplans.33
●Automateawidevarietyoflegalwork.34
●Supportleadingwealthmanagers.35
●Increasetheproductivityofcall-centreworkers.36
●Accelerateacademicresearch,forexampleineconomics.37
AnnexAprovidesmoredetailonAIcapabilitiesincontentcreation,computervision,theoryofmind,memory,mathematics,physicalintuition,androbotics.
FrontierAImodelscanbeaugmentedwithtoolstomakethemmoreautonomous
FrontierAImodelsaremoreusefulwhenaugmentedwithothertoolsandsoftware.
8
FrontierAImodels,beforetheyareaugmented,respondtoarequestsimplybyproducingasnippetoftext.Bycontrast,autonomous38AIagents39cantakelongsequencesofactionsinpursuitofagoal,withoutrequiringhumaninvolvement.
Researchershavebuiltsoftwareprogramscalled“scaffolds”40thatallowfrontierAImodelstopowerautonomousAIagents.ThescaffoldpromptstheAImodeltocreateaplanforachievingahigh-levelgoalandtothenexecutetheplanstepbystep.ThescaffoldaugmentstheAI
modelwithtoolslikewebbrowsers,allowingittoexecuteeachstepautonomously.Theresultantsystem,builtoutoftheAImodelandthescaffold,isanAIagent.AutoGPTisthemostwell-publicisedexampleofsuchanAIagentasoflate2023.41
Today’sAIagentscurrentlystruggletoperformmosttasks–theyoftengetstuckinloopsandcannotself-correct,orfailatcrucialsteps.However,theydoallowfrontierAItoperformsomeentirelynewtasks.ExamplesoftasksthatAIagentscancurrentlydoinclude:
●Findspecificinformationbybrowsingtheinternet.42
●Organisepartiesinsimulated‘TheSims’-likeenvironments.43
●Solvecomplexproblemsinopen-worldsurvivalgameslikeMinecraft44andCrafter45.
●Supportthesynthesisofchemicalsbysearchingthewebforrelevantinformationandwritingcodetooperaterobotichardware.46
ManyleadingAIresearchersandcompaniesexplicitlyaimtobuildAIagentswhosegeneralcapabilitieswouldexceedthoseofhumans.47
FrontierAIcouldbemorecapablethanevaluationsindicate
ResearchersandusersfrequentlyuncoversurprisingcapabilitiesforfrontierAImodelswhichpre-deploymentevaluationdidnotuncover.48
ThecapabilitiesoffrontierAImodelsarelikelytobefurtherenhancedinmanywaysinthefuture,suchasthrough:
●Betterprompts.49ThewaythataquestionisphrasedcansignificantlyaffectafrontierAIsystem’sresponse.Forexample,encouragingamodeltothinkthroughitsanswer“stepbystep”significantlyimprovesperformanceonmathsandlogicproblems.50
●Bettertools.FrontierAImodelscanbetrainedtousetoolslikewebbrowsers,
calculators,knowledgedatabases,orrobotactuators,andcancompetentlyuseentirelynewtoolswhenprovidedtextinstructionsonhowtousethem51.Thesetoolsand
resourcescansignificantlyimprovecapabilitiesatrelevanttasksorendowthemwithentirelynovelcapabilities,suchastheabilitytodirectlymanipulatephysicalsystems.52
●Betterscaffolds.Scaffoldingsoftwareprograms(“scaffolds”)structuretheinformationflowofanAImodel,leavingthemodelitselfunchanged.53Betterscaffoldscould,forexample,helpanAIagentself-correctwhentheyhavemadeamistake,54orimprovetheirlong-termmemory.
●Newfine-tuningdata.Fine-tuningonhigh-qualitydatacansignificantlyimproveAIcapabilitiesinagivendomain,atatinyfractionofthecostofpre-training.
9
●Team-workbetweenAIsystems.MultipledifferentAIsystems,includingbothnarrowmodelsandmoregeneralmodels,couldcollaboratetoperformtasks.55
Unlikepre-training,theseimprovementsdonotrequiresignificantcomputationalresourcesandsoawiderangeofactorscouldcheaplyimprovefrontierAIcapabilities,providedthey
haveeasyaccesstopre-trainedmodels.
LimitationsoffrontierAI
ThereisongoingdebateaboutthelimitationsoffrontierAIsystems,includingwhethertheirperformanceisdrivenmorebygeneralreasoningorbyacombinationofmemorisationandfollowingbasicheuristics56.
GeneralreasoningabilitiesareevidencedbyfrontierAIproducingremarkablyaptresponsestonovelquestions,Forexample,PaLM’sabilitytounderstandthehumourbehindjokeswhich
hadneverbeforebeentold.57
However,thereisalsoevidencethatmodelsrelyheavilyonmemorisationandbasicheuristics:
●LLMsperformlesswellwhenaquestionisrewordedtomakeitdifferentfromtextthatisintheirtrainingdata.58
●LLMsoftensolvecomplexproblemsusingoverly-simpleheuristicsthatwouldfailtosolveothersimilarproblems.59
●ThereareinstanceswhereLLMsfailtoapplyinformationfromtheirtrainingdatainverybasicways.60
Beyondanuncertainabilitytogeneralisetonewcontexts,otherkeylimitationsofcurrentfrontierAImodelsinclude:
●Hallucinations:AIsystemsregularlyproduceplausibleyetincorrectanswersandstatetheseanswerswithhighconfidence.61Thismightbeaddressedbysystemsusing
knowledgerepositories,62improvedfine-tuning,ornewmethodsforteachingthemodelwhatitdoesanddoesnotknow.
●Coherenceoverextendeddurations:AImodelsarelessreliableontasksthatrequirelong-termplanningortakingalargenumberofsequentialsteps(e.g.writinganovel).63Thisispartiallyduetotheirrestrictedcontextlengthandthescarcityoflong-duration
tasktrainingdata.64TheselimitationsmightbeaddressedbyalgorithmicinnovationstogiveAIasourceoflong-termmemory,creatingmoredataonlong-horizontasks,betterscaffoldsthathelpAIagentsspotandcorrecttheirownerrors,65orimprovedtechniquesforbreakinglongtasksintomultiplesmallsteps66.
●Lackofdetailedcontext:Manytasksintherealeconomyrequireextensivecontextaboutaparticularcompany,project,orcode-base.Currentfrontiersystemsare
genericallycompetent,butlackthisspecificcontextandcannotlearnitfromthe
availabledata.Thismightbeaddressedbyaccesstoadditionalprivatedatasources,newdatagenerationtechniques,moredata-efficientfine-tuningtechniques,new
“model-based”learningmethods,67orsimplybyincreasingthecomputeanddatausedtodevelopthesystem.
10
Itremainsuncertainhowtheselimitationswillevolve.SomearguethattheselimitationswillpermanentlylimitfrontierAIdevelopmentincertainapplications.Ontheotherhand,recentprogressinAIhasgreatlysurpassedexpertpredictionsinmanydomains,while
underperforminginotherareas.68
HowmightfrontierAIcapabilitiesimproveinthefuture?
RecentAIprogresshasbeenrapidandwilllikelycontinue.Thisisduetopredictable
improvementsintheperformanceoffrontierAImodelswhendevelopedwithmore
compute,moredataandbetteralgorithms.Unexpectednewcapabilitiesmayalso
emerge.Advancedgeneral-purposeAIagentscouldbedevelopedinthenottoodistantfuture–althoughthisisasubjectofdebate,especiallyregardingthetiming.
RecentAIprogresshasbeenrapid
TherecentpaceofAIprogresshassurprisedforecastersandmachinelearningexpertsalike.69ProblemsthatfrustratedtheAIcommunityfordecadeshaverapidlyfallentoever-more-
capablemodels.
Figure3.AnoverviewofnotableAIachievementsfrom2022-2023acrossdiversedomains,Epoch2023
RecentadvancesinfrontierAIarethecontinuationofalonger-runningtrend:therapid
progresssince2012initsparentfieldofdeeplearningacrosscomputervision,gameplaying,andlanguagemodelling.70In2014,AIcouldonlygeneratesimple,blurryimages.However,by2022,modelslikeDALL-E2andImagencouldgeneratehigh-quality,creativeimagesfromtextprompts(seefigure4a).SubstantialadvanceswereseenintheshiftfromGPT-3.5toGPT-4,releasedjustmonthsapart.Forexample,oncalculusquestionsGPT-3.5scoredbelowmost
humans,butGPT-4improvedsignificantlyandscoredaroundthemedianhumanlevel.
11
Figure4b.CompletionsfromGPT-2to
Figure4a.Timelineofimagesgeneratedbyimagemodelsfrom
OurWorldinData
GPT-4.GPT-4completionfrom
Bubeck
etal.,2023.
Recentprogresswasdrivenbysystematictrendsincompute,dataandalgorithms
AstandardanalysisofprogressinAIcapabilitiesconsidersthreekeyfactors:computingpower,data,andimprovementsintheunderlyingalgorithms.71
Computingpower(“compute”forshort)referstothenumberofoperationsthatareperformed,usuallyinthecontextoftrainingAIsystems.Theamountofcomputeusedduringtraininghasexpandedoverthepastdecadebyafactorof55million:fromsystemstrainedbysingle
researchersatthecostofafewpounds,tosystemstrainedonmultipleGPUclustersby
companiesatthecostofmanymillionsofpounds.72Thistrendismostlytheresultofspendingmoremoneyoncompute,aswellastheresultofsignificanttechnologicalimprovementsto
computinghardware.73
Trainingalgorithmshavealsoimprovedsubstantiallyoverthepastdecade,sothattoday’s
machinelearningmodelscanachievethesameperformancewithlesscomputeanddatathan
thoseofthepast.Researchsuggeststhatbetteralgorithmsroughlyhalvedcompute
requirementseachyearforvisionandlanguagemodels.74MassiveamountsofdatahavealsoplayedanimportantroleinrecentAIprogress.AIdevelopershavetappedintoreadilyavailabledatasetsscrapedfromtheinternet,withtheamountoftrainingdatausedgrowingatover50%peryear.75
Enhancementsappliedafterinitialtraininghavefurtheraugmentedsystemcapabilities.Thesepost-trainingenhancementsincludeimproveddataforfine-tuning,76equippingmodelswith
toolslikecalculators,77webbrowsers78,andbetterprompts.79Post-trainingenhancementscansignificantlyimproveperformanceinspecificdomainsatasmallfractionoftheoriginaltrainingcost,80andsoawiderangeofactorscanusethemtoimprovefrontierAIcapabilities.
12
Scalinglaws:performanceimprovespredictablywithincreasedcomputeanddata
ThekeydriverfortheincreaseincomputeanddataisthatfrontierAImodelperformance
predictablyimproveswithmodelscale.Researchershavediscoveredso-called“scaling
laws”,81whichcanpredict,givenaparticularamountofcomputeanddata,afrontierAImodel’sperformanceatthespecifictaskofpredictingthenextword(thetaskusedtotrainthese
models).
Figure5a.Trainingerrorreduces
predictablywithcomputeacrossa
broadrangeofempirically-studied
trainingruns.Figurefrom
Hoffmannet
al,2022.
Figure5b.ExponentialincreaseintrainingcomputeforOpenAI'sGPTmodelsfrom2018to2023.82Epoch.
Nextwordpredictionhascontinuallyimprovedovertimeasdevelopershavescaledtheir
trainingcomputeanddata.Itisuncertainhowlongthistrendwillcontinue,butithasheldovermanyordersofmagnitudeofcomputeanddatasetsizeincreaseswithoutbreaking.
Whilethenextwordpredictiontaskisnotitselfwhatwecareabout,itisusedasanindicatorofmodelcapabilitiessinceitisstronglycorrelatedwithperformanceinmanydownstreamtasks.83Forexample,ifamodelisextremelygoodatnextwordpredictiononcodeandmathematics
data,itismorelikelytobegoodatsolvingprogrammingpuzzlesandmathematicsproblems.
13
Figure6.PerformanceonbroadbenchmarkssuchasBIG-BenchandMMLUimproveswithmoretrainingcompute.ThisfigurewastakenfromOwen2023.
Althoughaverageperformance,aggregatedacrossmanydownstreamtasks,improvesfairlypredictablywithscale,itismuchhardertopredictperformanceimprovementsatspecificreal-worldproblems.ThedevelopmentoffrontierAIsystemshasinvolvedmanyexamplesof
surprisingcapabilities,unanticipatedbymodeldevelopersbeforetrainingandoftenonly
discoveredbyusersafterdeployment.Therearedocumentedexamplesofunexpected
capabilitieswheremodelswerenotshowinganysignsofimprovementbeforeacertainscaleandthenrapidlyimprovedsuddenly84–thoughtheinterpretationoftheseexamplesis
contested.85Inanycase,wecannotcurrentlyreliablypredictaheadoftimewhichspecificnewcapabilitiesafrontierAImodelwillgainwhenitistrainedwithmorecomputeanddata.
14
Figure7.IndividualcapabilitiesmayappearsuddenlyorunexpectedlyasthecomputeusedtodevelopAIincreases.Figurefrom
Weietal,2022.
RapidAIprogressislikelytocontinueforseveralyears
TherecentimprovementinAIcapabilitiesisnottheresultofasinglebreakthroughbutratheraconcertedadvancementacrossmultipledimensions,includingalgorithms,spendingon
compute,improvementsinhardwareperformance,andpost-trainingenhancements.Allofthesefactorscanindependentlyenhanceprogress,meaningthatchallengesorlimitsinanysingleoneofthemisunlikelytostopprogressinAIasawhole.
InvestmentsinAIwillcontinuetogrowrapidlyoverthenextfewyears.86LeadingAIdeveloperslikeAnthropicandOpenAIhavegarneredsignificantfundingandestablishedcloud
partnerships,inlargeparttosupportfurtherscalingofcompute.87HardwaremanufacturerslikeTSMCarereportedlyexpandingtheirproductionofAIchips,againsuggestingthatmore
computationalresourceswillbeavailablefortraining.88
However,sustainingtherateofrecentrapidscaleupofcomputeanddatapast2030islikelytorequirenewapproaches.Developerswouldhavetoi)spendhundredsofbillionsofpoundsoncomputeforasingletrainingrun89andii)findwaystogeneratesufficienthigh-qualitydata
goingbeyondwhatisreadilyavailableontheinternet.90Havingsaidthis,improvementsinalgorithmicefficiencymayreducecomputeneeds,suchthatcomputemightnotbeabindingconstraint.
NovelresearchdirectionsthatcouldfurtheracceleratefrontierAIprogressinclude:
15
●Enrichedtrainingdata–e.g.experthumanfeedback,AIgeneratedsyntheticfeedback,anddatapruning–mayincreasedataefficiency,improvecapabilitiesonchallengingscientificproblems,andreducecosts.91
●Multimodaltraining,whichmayofferincreasingsynergiesbetweenthedifferent
modalitiesandthepotentialforfrontierAItoprocessandproducetext,images,audioandvideo.92
●TrainingfrontierAItoactasanautonomousagentthatnavigatestheinternetasahumanandperformslongsequencesofactions,usingtheabovetechniquesto
generatecheapdataforlearningtheseskills.93
Importantly,thereisalsotheprospectthatAIsystemsthemselvesaccelerateAIprogress.
FrontierAIisalreadyhelpingAIresearcherstocreatesyntheticdatafortraining,94writenewcode,95andevenimprovemodelarchitectures.96WhileAIresearchiscurrentlymostlynon-automated,increasedautomationbyfuturefrontierAIsystemsmayacceleratethepaceofAIprogresssignificantly.97ThiscouldmeanwedevelopverycapableAIsystemssoonerthatwewouldotherwiseexpect,andhavelesstimetopreparefortheassociatedrisks.
Advancedgeneral-purposeAIagentsmightbedevelopedinthefuture
RecentprogressinAIhasprompteddiscussionregardingthepotentialnear-termdevelopment
ofadvancedgeneral-purpose,highlyautonomousAIagentsthatcanperformmosteconomicallyvaluabletasksbetterthanhumanexperts.
SeveralleadingAIcompaniesexplicitlyaimtobuildsuchsystems,98andbelievethattheymaysucceedthisdecade.99Somesurveysofpublishedmachinelearningresearchershavefoundthemedianrespondentpredictsagreaterthan10%chanceofhuman-levelmachine
intelligenceby2035,thoughthesesurveyshavebeencritiqued.100Attemptsatforecastingthedevelopmentofhuman-levelmachineintelligencebasedonhistorictrendsincomputingcostsandgrowthinAIresearchinputssometimesconcludethatthereisagreaterthan10%
probabilityby2035.101
However,thereisalargeamountofuncertaintyaboutthetimelinetothesecapabilities.Many,
ifnotmost,otherresearchersdonotexpectAIsystemsthatgenerallymatchhuman
performancewithintwentyyearsanddonotagreethatitisaconcern.102Historically,andfrequently,therehavebeenpredictionsofimminentAIbreakthroughsthatdidnotcometopass.103
WhatrisksdofrontierAIpresent?
WemustunderstandtherisksassociatedwithfrontierAItosafelyaccessandseizetheopportunitiesandbenefitsthetechnologybrings.
Inthissection,wefirstreviewseveralcross-cuttingriskfactors–technicalandsocietal
conditionsthatcouldaggravatean
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年縫紉設(shè)備分期付款購買合同
- 2024年中國蝦夷扇貝市場調(diào)查研究報(bào)告
- 2024年版:騰訊云服務(wù)器租賃協(xié)議3篇
- 二零二五年度公司搬遷合同范本:員工安置與就業(yè)培訓(xùn)一體化協(xié)議3篇
- 2024年簡明離婚合同范本不含財(cái)產(chǎn)分割版B版
- 2025年度城市供排水設(shè)施改造竣工財(cái)務(wù)決算編制服務(wù)合同2篇
- 2024年風(fēng)力發(fā)電設(shè)備購銷合同樣本
- 2024版商業(yè)貸款擔(dān)保協(xié)議法律認(rèn)證版B版
- 2025年度泥工工勞務(wù)分包合同(含裝配式建筑構(gòu)件)3篇
- 2024武漢住宅租賃合同(含租賃雙方違約責(zé)任)3篇
- 2024高考物理一輪復(fù)習(xí):觀察電容器的充、放電現(xiàn)象(練習(xí))(學(xué)生版+解析)
- 公司安全生產(chǎn)事故隱患內(nèi)部報(bào)告獎(jiǎng)勵(lì)工作制度
- 2024年度內(nèi)蒙古自治區(qū)國家電網(wǎng)招聘之電工類綜合練習(xí)試卷A卷附答案
- 艾滋病預(yù)防知識(shí)講座
- 零售服務(wù)質(zhì)量提升
- 《4 平平安安回家來》 說課稿-2024-2025學(xué)年道德與法治一年級(jí)上冊統(tǒng)編版
- 2024中考英語真題分類匯編-代詞
- 第九版內(nèi)科學(xué)配套課件-8-骨髓增生異常綜合征(MDS)
- 新型電力系統(tǒng)背景下新能源發(fā)電企業(yè)技術(shù)監(jiān)督管理體系創(chuàng)新
- 新聞宣傳報(bào)道先進(jìn)單位(集體)申報(bào)材料
- 螞蟻集團(tuán)在線素質(zhì)測評(píng)題
評(píng)論
0/150
提交評(píng)論