版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省南師附中2025屆高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.2.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-54.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心5.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40406.對于定義在上的函數(shù),若下列說法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有7.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.8.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.19.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.10.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.11.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是___.14.實(shí)數(shù),滿足約束條件,則的最大值為__________.15.?dāng)?shù)列滿足,則,_____.若存在n∈N*使得成立,則實(shí)數(shù)λ的最小值為______16.已知數(shù)列的前項(xiàng)和為,且滿足,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓,直線經(jīng)過點(diǎn),直線經(jīng)過點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).(Ⅰ)若分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.18.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.19.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.20.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè),且當(dāng)時(shí),不等式有解,求實(shí)數(shù)的取值范圍.21.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.22.(10分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對使得且的概率為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.2、D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.4、A【解析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.5、D【解析】
計(jì)算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.6、B【解析】
根據(jù)函數(shù)對稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對稱,若關(guān)于對稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.7、C【解析】
將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長和虛軸長,進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.8、A【解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.9、D【解析】
把5本書編號(hào),然后用列舉法列出所有基本事件.計(jì)數(shù)后可求得概率.【詳解】3本不同的語文書編號(hào)為,2本不同的數(shù)學(xué)書編號(hào)為,從中任意取出2本,所有的可能為:共10個(gè),恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點(diǎn)睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計(jì)數(shù)計(jì)算概率.10、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.11、D【解析】
設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.12、D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、C【解析】
假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎(jiǎng)的說對人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對錯(cuò)丙對錯(cuò)對錯(cuò)丁對錯(cuò)錯(cuò)對說對人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.14、10【解析】
畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點(diǎn)時(shí),截距最小,最大解得的最大值為10故答案為:10【點(diǎn)睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.15、【解析】
利用“退一作差法”求得數(shù)列的通項(xiàng)公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進(jìn)而求得的最小值.【詳解】當(dāng)時(shí)兩式相減得所以當(dāng)時(shí),滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項(xiàng),即有的最小值為.故答案為:(1).(2).【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項(xiàng)公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.16、【解析】
對題目所給等式進(jìn)行賦值,由此求得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時(shí),,時(shí),,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,可得.【點(diǎn)睛】本小題主要考查已知求,考查等比數(shù)列前項(xiàng)和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】
(Ⅰ)計(jì)算得到故,,,,計(jì)算得到面積.(Ⅱ)設(shè)為,聯(lián)立方程得到,計(jì)算,同理,根據(jù)得到,得到證明.(Ⅲ)設(shè)中點(diǎn)為,根據(jù)點(diǎn)差法得到,同理,故,得到結(jié)論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設(shè)為,則,故,設(shè),,故,,同理可得,,故,即,,故.(Ⅲ)設(shè)中點(diǎn)為,則,,相減得到,即,同理可得:的中點(diǎn),滿足,故,故四邊形不能為矩形.【點(diǎn)睛】本題考查了橢圓內(nèi)四邊形的面積,形狀,根據(jù)四邊形形狀求參數(shù),意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1)①;②8079;(2).【解析】
(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對任意給定的,在區(qū)間上總存在兩個(gè)不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當(dāng)時(shí),對任意給定的,在上總存在兩個(gè)不同的,使成立.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時(shí)所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問題解決.19、(1);(2)10【解析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.20、(1);(2).【解析】
(1)通過分類討論去掉絕對值符號(hào),進(jìn)而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【詳解】(1)當(dāng)時(shí),可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查絕對值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問題;關(guān)鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.21、(1)(2)或【解析】
(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年云南省大理自治州公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年江西省吉安市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年四川省南充市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年緩控釋制劑項(xiàng)目資金需求報(bào)告
- 2020年四川省德陽市中考化學(xué)試卷
- 新疆阿勒泰地區(qū)(2024年-2025年小學(xué)六年級(jí)語文)統(tǒng)編版競賽題((上下)學(xué)期)試卷及答案
- 湖南省婁底市(2024年-2025年小學(xué)六年級(jí)語文)統(tǒng)編版能力評測(下學(xué)期)試卷及答案
- 2024年鋁礦開采權(quán)買賣協(xié)議
- 2024年酒店消防工程升級(jí)改造施工合同版B版
- 2024年自愿離婚協(xié)議范本修訂與備案服務(wù)合同3篇
- 2025共團(tuán)永康市委下屬青少年綜合服務(wù)中心駐團(tuán)市委機(jī)關(guān)人員招聘2人(浙江)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年計(jì)算機(jī)二級(jí)WPS考試題目
- 智能 檢測與監(jiān)測 技術(shù)-智能建造技術(shù)專01課件講解
- 網(wǎng)絡(luò)版權(quán)合同范例
- 工貿(mào)企業(yè)安全生產(chǎn)費(fèi)用提取和使用管理制度(4篇)
- 各類骨折病人體位護(hù)理
- GB/T 750-2024水泥壓蒸安定性試驗(yàn)方法
- 郵政行業(yè)事故隱患監(jiān)測與獎(jiǎng)勵(lì)機(jī)制
- 南京工業(yè)大學(xué)《建筑結(jié)構(gòu)與選型》2021-2022學(xué)年第一學(xué)期期末試卷
- 派出所考勤制度管理制度
- 《舊餐桌上的美好時(shí)光》閱讀及答案
評論
0/150
提交評論