版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省棗莊市滕州市滕州市第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.402.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q3.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大4.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.5.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.6.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.87.函數(shù)的圖象大致是()A. B.C. D.8.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.9.已知集合,,若,則()A.或 B.或 C.或 D.或10.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-11.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知拋物線C:,過(guò)焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn)(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)過(guò)定點(diǎn)________.14.已知函數(shù)在點(diǎn)處的切線經(jīng)過(guò)原點(diǎn),函數(shù)的最小值為,則________.15.在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)之和為1024,則展開(kāi)式常數(shù)項(xiàng)的值等于_______.16.正四面體的一個(gè)頂點(diǎn)是圓柱上底面的圓心,另外三個(gè)頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點(diǎn),且,當(dāng)平面時(shí),求實(shí)數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時(shí),求與平面所成角的正弦.18.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.19.(12分)的內(nèi)角、、所對(duì)的邊長(zhǎng)分別為、、,已知.(1)求的值;(2)若,點(diǎn)是線段的中點(diǎn),,求的面積.20.(12分)已知數(shù)列滿足(),數(shù)列的前項(xiàng)和,(),且,.(1)求數(shù)列的通項(xiàng)公式:(2)求數(shù)列的通項(xiàng)公式.(3)設(shè),記是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)于任意的均有.21.(12分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?22.(10分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.2、C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C3、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對(duì)稱軸,開(kāi)口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.4、B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.5、A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡(jiǎn)單題.6、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)椋?,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.7、A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.8、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.9、B【解析】
因?yàn)?所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.10、A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.11、B【解析】
由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.12、B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡(jiǎn)求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因?yàn)?,所以,得,所以,即,,所?故選:B.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見(jiàn)函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.14、0【解析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過(guò)原點(diǎn),所以,,,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..15、【解析】
利用展開(kāi)式所有項(xiàng)系數(shù)的和得n=5,再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得展開(kāi)式中的常數(shù)項(xiàng).【詳解】因?yàn)榈亩?xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)之和為4n=1024,n=5,故的展開(kāi)式的通項(xiàng)公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項(xiàng)為T5=C·3=15,故填15.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用、二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于中檔題.16、【解析】
設(shè)正四面體的棱長(zhǎng)為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設(shè)正四面體的棱長(zhǎng)為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點(diǎn)睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)連接交于點(diǎn),連接,利用線面平行的性質(zhì)定理可推導(dǎo)出,然后利用平行線分線段成比例定理可求得的值;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接,推導(dǎo)出,,可得出為平面與平面所成的銳二面角,由此計(jì)算出、,并證明出平面,可得出直線與平面所成的角為,進(jìn)而可求得與平面所成角的正弦值.【詳解】(1)連接交于點(diǎn),連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接.為的中點(diǎn),且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點(diǎn),所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點(diǎn)睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時(shí)也考查了線面角的計(jì)算,涉及利用二面角求線段長(zhǎng)度,考查推理能力與計(jì)算能力,屬于中等題.18、(1)證明見(jiàn)解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)?,所以,解得所以點(diǎn),到平面的距離為【點(diǎn)睛】本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來(lái)求,屬于中檔題19、(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡(jiǎn)得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因?yàn)辄c(diǎn)是線段的中點(diǎn),所以兩邊平方得由得整理得,解得或(舍)所以的面積【點(diǎn)睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.20、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據(jù),求出的通項(xiàng)公式為,再檢驗(yàn)的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項(xiàng)之間的關(guān)系,從而可求出結(jié)果;(3)通過(guò)(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因?yàn)閿?shù)列滿足()①;②當(dāng)時(shí),.檢驗(yàn)當(dāng)時(shí),成立.所以,數(shù)列的通項(xiàng)公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因?yàn)?所以,上式同除以,得,,即,所以,數(shù)列時(shí)首項(xiàng)為1,公差為1的等差數(shù)列,故,.(3)因?yàn)椋?,,,.記,當(dāng)時(shí),.所以,當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬仿真技術(shù)在沉浸式教學(xué)中的應(yīng)用研究-洞察分析
- 網(wǎng)絡(luò)攻擊溯源技術(shù)-第6篇-洞察分析
- 纖維素資源高效轉(zhuǎn)化技術(shù)-洞察分析
- 營(yíng)養(yǎng)監(jiān)測(cè)與管理-洞察分析
- 辦公區(qū)域空氣質(zhì)量與幽門螺旋桿菌的關(guān)系
- 辦公自動(dòng)化對(duì)學(xué)校管理的提升作用
- 辦公設(shè)備安全使用指南
- 企業(yè)贊助在學(xué)校社團(tuán)發(fā)展中的作用研究
- 《加拿大概況》課件
- 辦公室應(yīng)急疏散策略與技巧培訓(xùn)研討會(huì)
- 知識(shí)圖譜構(gòu)建實(shí)踐建設(shè)方案
- 2024年度跨國(guó)業(yè)務(wù)代理合同3篇
- 內(nèi)科危重患者的護(hù)理
- 紀(jì)念抗日救亡一二九運(yùn)動(dòng)弘揚(yáng)愛(ài)國(guó)精神宣傳課件
- 青少年足球培訓(xùn)
- 【MOOC】寄生人體的惡魔-醫(yī)學(xué)寄生蟲(chóng)學(xué)-南方醫(yī)科大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 大學(xué)生心理健康(上海交通大學(xué))知到智慧樹(shù)章節(jié)答案
- 16大家排好隊(duì) 說(shuō)課稿-2024-2025學(xué)年道德與法治一年級(jí)上冊(cè)統(tǒng)編版
- 2025人教版九年級(jí)英語(yǔ)全冊(cè)知識(shí)點(diǎn)清單
- 醫(yī)院緊急情況一鍵報(bào)警制度建設(shè)
- 企業(yè)培訓(xùn)師競(jìng)聘
評(píng)論
0/150
提交評(píng)論