江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)江西農(nóng)業(yè)大學(xué)《自動(dòng)化與智能科學(xué)與技術(shù)概論》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的智能客服可以回答用戶的各種問題。假設(shè)我們要評(píng)估一個(gè)智能客服的性能,以下關(guān)于評(píng)估指標(biāo)的說(shuō)法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語(yǔ)言的優(yōu)美程度D.能夠解決問題的復(fù)雜程度2、在人工智能的語(yǔ)音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語(yǔ)音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語(yǔ)音特征C.只訓(xùn)練模型生成單一的語(yǔ)音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語(yǔ)言模型,提高語(yǔ)音合成的質(zhì)量3、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對(duì)某一產(chǎn)品的評(píng)價(jià)情感,以下關(guān)于情感分析的描述,正確的是:()A.僅僅依靠關(guān)鍵詞匹配就能夠準(zhǔn)確判斷文本的情感傾向B.深度學(xué)習(xí)模型在情感分析中總是比傳統(tǒng)的機(jī)器學(xué)習(xí)方法更準(zhǔn)確C.考慮文本的上下文、語(yǔ)義和語(yǔ)法結(jié)構(gòu)等多方面信息,能夠提高情感分析的準(zhǔn)確性D.情感分析的結(jié)果不受文本的語(yǔ)言風(fēng)格和表達(dá)方式的影響4、人工智能在醫(yī)療領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨著數(shù)據(jù)隱私和安全性的挑戰(zhàn)。假設(shè)一個(gè)醫(yī)療機(jī)構(gòu)要使用人工智能技術(shù)分析患者的醫(yī)療數(shù)據(jù)來(lái)輔助診斷疾病,同時(shí)要確?;颊邤?shù)據(jù)不被泄露和濫用。以下哪種技術(shù)或方法在保障數(shù)據(jù)安全和隱私方面最為有效?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.建立嚴(yán)格的訪問控制機(jī)制D.以上方法綜合運(yùn)用5、人工智能中的計(jì)算機(jī)視覺技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類和語(yǔ)義分割是計(jì)算機(jī)視覺中的常見任務(wù)B.計(jì)算機(jī)視覺技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺技術(shù)的發(fā)展6、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法7、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類,例如區(qū)分貓、狗、鳥等不同的動(dòng)物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度8、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時(shí),以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過(guò)查找預(yù)定義的情感詞來(lái)判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動(dòng)學(xué)習(xí)語(yǔ)言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動(dòng)化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)9、當(dāng)利用人工智能進(jìn)行推薦系統(tǒng)的設(shè)計(jì),例如為用戶推薦個(gè)性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過(guò)濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是10、在一個(gè)利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識(shí)別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對(duì)于實(shí)時(shí)處理和準(zhǔn)確識(shí)別起到重要作用?()A.快速目標(biāo)檢測(cè)算法B.高效的特征提取方法C.分布式計(jì)算框架D.以上都是11、在自然語(yǔ)言處理中,機(jī)器翻譯是一個(gè)重要的研究方向。假設(shè)要開發(fā)一個(gè)能夠在多種語(yǔ)言之間進(jìn)行高質(zhì)量翻譯的系統(tǒng)。以下關(guān)于機(jī)器翻譯技術(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于規(guī)則的機(jī)器翻譯依靠人工編寫的語(yǔ)法和詞匯規(guī)則進(jìn)行翻譯B.統(tǒng)計(jì)機(jī)器翻譯通過(guò)對(duì)大量雙語(yǔ)語(yǔ)料的統(tǒng)計(jì)分析來(lái)學(xué)習(xí)翻譯模式C.神經(jīng)機(jī)器翻譯利用深度神經(jīng)網(wǎng)絡(luò)模型,能夠生成更自然流暢的翻譯結(jié)果D.現(xiàn)有的機(jī)器翻譯技術(shù)已經(jīng)能夠完美處理各種領(lǐng)域和文體的文本,無(wú)需人工干預(yù)和修正12、在人工智能的自然語(yǔ)言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望13、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)環(huán)境的獎(jiǎng)勵(lì)信號(hào)存在延遲和不確定性。以下哪種方法能夠幫助智能體更好地應(yīng)對(duì)這種情況?()A.使用深度強(qiáng)化學(xué)習(xí)算法,具有更強(qiáng)的表示能力B.引入先驗(yàn)知識(shí)和啟發(fā)式策略C.增加訓(xùn)練的迭代次數(shù)D.以上都是14、在人工智能的發(fā)展中,可解釋性是一個(gè)重要的研究方向。假設(shè)一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測(cè)結(jié)果準(zhǔn)確就行B.可解釋性只對(duì)研究人員有意義,對(duì)于實(shí)際應(yīng)用中的用戶不重要C.通過(guò)特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對(duì)模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無(wú)法解釋的黑盒部分15、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說(shuō)法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述數(shù)據(jù)隱私保護(hù)在人工智能中的重要性。2、(本題5分)談?wù)勅斯ぶ悄茉谥悄苌a(chǎn)能耗優(yōu)化中的應(yīng)用。3、(本題5分)簡(jiǎn)述人工智能在法律領(lǐng)域的應(yīng)用和挑戰(zhàn)。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用自然語(yǔ)言處理技術(shù),對(duì)大量的學(xué)術(shù)論文進(jìn)行主題建模,如使用潛在狄利克雷分配(LDA)模型。提取論文中的關(guān)鍵詞和主題,分析不同主題之間的關(guān)系和分布,為學(xué)術(shù)研究的趨勢(shì)分析提供支持。2、(本題5分)使用PyTorch構(gòu)建一個(gè)自動(dòng)編碼器,對(duì)高維的基因表達(dá)數(shù)據(jù)進(jìn)行壓縮和重構(gòu)。分析壓縮后的數(shù)據(jù)質(zhì)量,通過(guò)調(diào)整編碼器和解碼器的結(jié)構(gòu)和參數(shù),提高重構(gòu)的準(zhǔn)確性,并探索數(shù)據(jù)中的潛在模式。3、(本題5分)利用Python實(shí)現(xiàn)一個(gè)基于規(guī)則的專家系統(tǒng),用于診斷某種疾病。定義疾病的癥狀、規(guī)則和推理邏輯,輸入患者的癥狀信息,系統(tǒng)能夠給出可能的診斷結(jié)果和建議。4、(本題5分)運(yùn)用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的行人行為分析,如行走速度、停留時(shí)間等。結(jié)合目標(biāo)跟蹤和姿態(tài)估計(jì)技術(shù),提取行為特征并進(jìn)行分析。5、(本題5分)利用Python中的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的人物動(dòng)作識(shí)別,結(jié)合骨骼關(guān)鍵

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論