版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省東營市墾利區(qū)第一中學2025屆高三3月份第一次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量滿足,且與的夾角為,則()A. B. C. D.2.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.3.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.4.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值6.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.7.已知實數(shù)集,集合,集合,則()A. B. C. D.8.已知,,則()A. B. C.3 D.49.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.128010.已知,則的值構成的集合是()A. B. C. D.11.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為()A. B. C. D.12.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足,則的最大值為________.14.我國古代數(shù)學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?”設人數(shù)、物價分別為、,滿足,則_____,_____.15.設函數(shù)在區(qū)間上的值域是,則的取值范圍是__________.16.已知函數(shù)函數(shù),則不等式的解集為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.18.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.19.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結.(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.20.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(Ⅰ)求直線的直角坐標方程與曲線的普通方程;(Ⅱ)已知點設直線與曲線相交于兩點,求的值.22.(10分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)向量的運算法則展開后利用數(shù)量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運算,屬于基礎題.2、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.3、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結合輸出結果,即可確定判斷條件,屬于??碱}型.4、B【解析】
求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎題.5、D【解析】
A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.6、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.7、A【解析】
可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.8、A【解析】
根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.9、A【解析】
根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).10、C【解析】
對分奇數(shù)、偶數(shù)進行討論,利用誘導公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.11、B【解析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質,根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練掌握函數(shù)圖象之間的變換關系,屬于簡單題目.12、D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組所表示的平面區(qū)域,將目標函數(shù)看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標函數(shù)表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標函數(shù)的最值,關鍵在于明確目標函數(shù)的幾何意義,屬于中檔題.14、【解析】
利用已知條件,通過求解方程組即可得到結果.【詳解】設人數(shù)、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數(shù)與方程的應用,方程組的求解,考查計算能力,屬于基礎題.15、.【解析】
配方求出頂點,作出圖像,求出對應的自變量,結合函數(shù)圖像,即可求解.【詳解】,頂點為因為函數(shù)的值域是,令,可得或.又因為函數(shù)圖象的對稱軸為,且,所以的取值范圍為.故答案為:.【點睛】本題考查函數(shù)值域,考查數(shù)形結合思想,屬于基礎題.16、【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉化為分段函數(shù)處理。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉化為計算.18、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算.【詳解】解:(Ⅰ)因為,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為,,,所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題.20、(1)3;(2);(3)見解析.【解析】
(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列?!军c睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用數(shù)列知識的能力。21、(Ⅰ)直線的直角坐標方程為;曲線的普通方程為;(Ⅱ).【解析】
(I)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設是方程的兩根,則有.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.22、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項和公式即可求出.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度服裝面料環(huán)保認證采購合同6篇
- 2024年度個人財產抵押委托擔保合同規(guī)范文本3篇
- 2024年度股權轉讓與市場拓展合同2篇
- 2024太陽能熱水系統(tǒng)安裝及后期維護服務合同3篇
- 2024版光伏發(fā)電機組集成供應及安裝合同2篇
- 2024年新版施工協(xié)議模板專業(yè)定制版版B版
- 2024年農村土地承包權流轉與農業(yè)品牌建設合同3篇
- 2024年度金華市國有土地上房屋征收補償合同2篇
- 2024年城市景觀改造用樹苗供應合同3篇
- 2024年度采購合同終止條款及具體描述3篇
- 建筑工地危大工程清單表
- 09-精裝修觀感品質提升(2021版)
- 施工升降機安裝及拆除專項施工方案
- CRH2型動車組一級檢修作業(yè)指導書
- JJG 700 -2016氣相色譜儀檢定規(guī)程-(高清現(xiàn)行)
- 教學感悟-適度教育“三維六度五環(huán)節(jié)”教學模式
- 電纜廠安全生產管理系統(tǒng)
- 新人教版小學二年級體育全冊教案
- 土地勘測定界技術方案
- 煙草病蟲害及缺素癥圖譜共63張幻燈片
- 高二物理磁場對電荷運動1
評論
0/150
提交評論