2025屆江蘇省連云港市東??h高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆江蘇省連云港市東海縣高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆江蘇省連云港市東??h高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆江蘇省連云港市東??h高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆江蘇省連云港市東??h高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江蘇省連云港市東??h高考適應(yīng)性考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的大致圖象為()A. B.C. D.2.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定3.如圖所示,正方體的棱,的中點(diǎn)分別為,,則直線與平面所成角的正弦值為()A. B. C. D.4.關(guān)于函數(shù),有下列三個(gè)結(jié)論:①是的一個(gè)周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()A. B. C. D.5.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線人數(shù)減少C.與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線人數(shù)相同6.函數(shù)滿足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,,則的值為()A.0 B.2 C.4 D.17.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.9.已知函數(shù),為圖象的對(duì)稱中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是()A. B. C. D.10.如果,那么下列不等式成立的是()A. B.C. D.11.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則()A. B.2 C.3 D.12.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線與所成角的余弦值為_(kāi)_________.14.將一顆質(zhì)地均勻的正方體骰子(每個(gè)面上分別寫(xiě)有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的的概率是___.15.已知函數(shù),若關(guān)于的方程在定義域上有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是_______.16.函數(shù)過(guò)定點(diǎn)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為求a,b的值;證明:.19.(12分)已知拋物線:,點(diǎn)為拋物線的焦點(diǎn),焦點(diǎn)到直線的距離為,焦點(diǎn)到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點(diǎn),過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).20.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.21.(12分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長(zhǎng)度.22.(10分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問(wèn)題,代入特殊點(diǎn),采用排除法求解是解決這類(lèi)問(wèn)題的一種常用方法,屬于中檔題.2、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.3、C【解析】

以D為原點(diǎn),DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點(diǎn)睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.4、B【解析】

利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出.【詳解】①因?yàn)?,所以是的一個(gè)周期,①正確;②因?yàn)?,,所以在上不單調(diào)遞增,②錯(cuò)誤;③因?yàn)?,所以是偶函?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域.當(dāng)時(shí),,在上單調(diào)遞增,所以,的值域?yàn)椋坼e(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.5、A【解析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過(guò)簡(jiǎn)單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯(cuò)誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯(cuò)誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識(shí)圖的能力,是一道較為簡(jiǎn)單的統(tǒng)計(jì)類(lèi)的題目.6、C【解析】

根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以的圖象關(guān)于原點(diǎn)對(duì)稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)?,所?因?yàn)?,故,所?故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.7、C【解析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.8、A【解析】

根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.9、A【解析】

結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,,,且,,,,,,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而.故選:.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡(jiǎn)單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.10、D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.11、A【解析】

由奇函數(shù)定義求出和.【詳解】因?yàn)槭嵌x在上的奇函數(shù),.又當(dāng)時(shí),,.故選:A.【點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.12、C【解析】

計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意畫(huà)出幾何題,建立空間直角坐標(biāo)系,寫(xiě)個(gè)各個(gè)點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫(huà)出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長(zhǎng)為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點(diǎn)睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.14、【解析】

先求出基本事件總數(shù)6×6=36,再由列舉法求出“點(diǎn)數(shù)之和等于6”包含的基本事件的個(gè)數(shù),由此能求出“點(diǎn)數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點(diǎn)數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點(diǎn)睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.15、【解析】

由題意可在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn),運(yùn)用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫(huà)出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個(gè)交點(diǎn),聯(lián)立可得有兩個(gè)解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時(shí),有兩個(gè)解.故答案為:【點(diǎn)睛】本題考查利用利用導(dǎo)數(shù)解決方程的根的問(wèn)題,還考查了等價(jià)轉(zhuǎn)化思想與函數(shù)對(duì)稱性的應(yīng)用,屬于難題.16、【解析】

令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見(jiàn)函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.18、(1);(2)見(jiàn)解析【解析】分析:第一問(wèn)結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問(wèn)可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來(lái)完成,這樣利用不等式的傳遞性來(lái)完成,再者這種方法可以簡(jiǎn)化運(yùn)算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設(shè)則只需證明,設(shè)則,在上單調(diào)遞增,,使得且當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞減當(dāng)時(shí),,單調(diào)遞增,由,得,,設(shè),,當(dāng)時(shí),,在單調(diào)遞減,,因此(方法二)先證當(dāng)時(shí),,即證設(shè),則,且,在單調(diào)遞增,在單調(diào)遞增,則當(dāng)時(shí),(也可直接分析顯然成立)再證設(shè),則,令,得且當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,即又,點(diǎn)睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的綜合問(wèn)題,在求解的過(guò)程中,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,有關(guān)切線的問(wèn)題,還有就是應(yīng)用導(dǎo)數(shù)證明不等式,可以構(gòu)造新函數(shù),轉(zhuǎn)化為最值問(wèn)題來(lái)解決,也可以借用不等式的傳遞性,借助中間量來(lái)完成.19、(1)(2)【解析】

(1)先分別表示出,然后根據(jù)求解出的值,則的標(biāo)準(zhǔn)方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達(dá)定理形式,然后根據(jù)距離公式表示出并代入韋達(dá)定理形式,由此判斷出為定值時(shí)的坐標(biāo).【詳解】(1)由題意可得,焦點(diǎn),,則,,∴解得.拋物線的標(biāo)準(zhǔn)方程為(2)設(shè),設(shè)點(diǎn),,顯然直線的斜率不為0.設(shè)直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時(shí),點(diǎn)的坐標(biāo)為【點(diǎn)睛】本題考查拋物線方程的求解以及拋物線中的定值問(wèn)題,難度一般.(1)處理直線與拋物線相交對(duì)應(yīng)的定值問(wèn)題,聯(lián)立直線方程借助韋達(dá)定理形式是常用方法;(2)直線與圓錐曲線的問(wèn)題中,直線方程的設(shè)法有時(shí)能很大程度上起到簡(jiǎn)化運(yùn)算的作用。20、(1)見(jiàn)解析(2),最大值.【解析】

(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面AD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論