2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江蘇省沭陽縣修遠(yuǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.2.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.3.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.4.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.5.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機(jī)分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.6.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.7.已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點8.過直線上一點作圓的兩條切線,,,為切點,當(dāng)直線,關(guān)于直線對稱時,()A. B. C. D.9.已知的面積是,,,則()A.5 B.或1 C.5或1 D.10.已知復(fù)數(shù),則的虛部是()A. B. C. D.111.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.12.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-2二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.高三(1)班共有56人,學(xué)號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為.15.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.設(shè)函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點,點滿足(其中為坐標(biāo)原點),點在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點為,若不經(jīng)過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當(dāng)時,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點與點關(guān)于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.19.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.20.(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.21.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.22.(10分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.2、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.3、B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B【點睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】

根據(jù)空間向量的線性運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎(chǔ)題.5、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.6、B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎(chǔ)題.7、A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.8、C【解析】

判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.9、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.10、C【解析】

化簡復(fù)數(shù),分子分母同時乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.11、B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.12、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.14、20【解析】

根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學(xué)號6,34,48分別是第一、三、四組的學(xué)號,所以還有一個同學(xué)應(yīng)該是15+6-1=20號,故答案為20.15、【解析】

確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計算能力.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時在[2,上單調(diào)遞增;當(dāng)時在上單調(diào)遞增;在上單調(diào)遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,【解析】

(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進(jìn)而求出周長為定值.【詳解】(1)設(shè),因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設(shè)切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標(biāo)準(zhǔn)方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.18、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】

(1)由,解方程組即可得到答案;(2)(?。┰O(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點的斜率公式計算即可.【詳解】(1)設(shè),由,得.將代入,得,即,由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),,則,(?。┮字獮榈闹形痪€,所以,所以,又滿足,所以,得,故,當(dāng)且僅當(dāng),即,時取等號,所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達(dá)定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到橢圓中的最值及定值問題,在解橢圓與直線的位置關(guān)系的答題時,一般會用到根與系數(shù)的關(guān)系,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道有一定難度的題.19、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】

(1)根據(jù)散點圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【點睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.20、(1);(2)2【解析】

(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進(jìn)行消參數(shù)運算,化為普通方程,再根據(jù)普通方程化極坐標(biāo)方程的公式得到圓C的極坐標(biāo)方程.(2)設(shè),聯(lián)立直線與圓的極坐標(biāo)方程,解得;設(shè),聯(lián)立直線與直線的極坐標(biāo)方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標(biāo)方程為.(2)設(shè),則由解得,,得;設(shè),則由解得,,得;所以【點睛】本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標(biāo)方程,考查極坐標(biāo)方程的求解運算,考查了學(xué)生的計算能力以及轉(zhuǎn)化能力,屬于基礎(chǔ)題.21、(1)證明見解析(2)【解析】

(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以因為.所以.即又.所以平面因為平面.所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個法向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論