《空間點直線平面之間的位置關系》教案_第1頁
《空間點直線平面之間的位置關系》教案_第2頁
《空間點直線平面之間的位置關系》教案_第3頁
《空間點直線平面之間的位置關系》教案_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

平面1、平面含義師:以上實物都給我們以平面的印象,幾何里所說的平面,就是從這樣的一些物體中抽象出來的,但是,幾何里的平面是無限延展的。2、平面的畫法及表示師:在平面幾何中,怎樣畫直線?之后教師加以肯定,解說、類比,將知識遷移,得出平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)DDCBAα平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。如果幾個平面畫在一起,當一個平面的一部分被另一個平面遮住時,應畫成虛線或不畫(打出投影片)αβαβαβ··B·B·A·B·Aα平面內有無數(shù)個點,平面可以看成點的集合。α點A在平面α內,記作:A∈α點B在平面α外,記作:Bα2.1-43、平面的基本性質教師引導學生思考教材P41的思考題,讓學生充分發(fā)表自己的見解。師:把一把直尺邊緣上的任意兩點放在桌邊,可以看到,直尺的整個邊緣就落在了桌面上,用事實引導學生歸納出以下公理公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內(教師引導學生閱讀教材P42前幾行相關內容,并加以解析)符號表示為LA·αALA·αB∈L=>LαA∈αB∈α公理1作用:判斷直線是否在平面內師:生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……引導學生歸納出公理2C·C·B·A·α符號表示為:A、B、C三點不共線=>有且只有一個平面α,使A∈α、B∈α、C∈α。公理2作用:確定一個平面的依據(jù)。教師用正(長)方形模型,讓學生理解兩個平面的交線的含義。引導學生閱讀P42的思考題,從而歸納出公理3P·P·αLβ符號表示為:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定兩個平面是否相交的依據(jù)空間中直線與直線之間的位置關系2、師:那么,空間兩條直線有多少種位置關系?(板書課題)(二)講授新課1、教師給出長方體模型,引導學生得出空間的兩條直線有如下三種關系:共面直線相交直線:同一平面內,有且只有一個公共點;共面直線平行直線:同一平面內,沒有公共點;異面直線:不同在任何一個平面內,沒有公共點。教師再次強調異面直線不共面的特點,作圖時通常用一個或兩個平面襯托,如下圖:2、(1)師:在同一平面內,如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。在空間中,是否有類似的規(guī)律?組織學生思考:長方體ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'與DD'平行嗎?生:平行再聯(lián)系其他相應實例歸納出公理4公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設a、b、c是三條直線=>a∥ca=>a∥cc∥b強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。(投影)讓學生觀察、思考:∠ADC與A'D'C'、∠ADC與∠A'B'C'的兩邊分別對應平行,這兩組角的大小關系如何?生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教師畫出更具一般性的圖形,師生共同歸納出如下定理等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補。教師強調:并非所有關于平面圖形的結論都可以推廣到空間中來。4、以教師講授為主,師生共同交流,導出異面直線所成的角的概念。(1)師:如圖,已知異面直線a、b,經過空間中任一點O作直線a'∥a、b'∥b,我們把a'與b'所成的銳角(或直角)叫異面直線a與b所成的角(夾角)。(2)強調:①a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關,為了簡便,點O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;⑤計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。1、判斷題:(1)a∥bc⊥a=>c⊥b()(1)a⊥cb⊥c=>a⊥b()2、填空題:在正方體ABCD-A'B'C'D'中,與BD'成異面直線的有________條??臻g中直線與平面、平面與平面之間的位置關系(二)研探新知1、引導學生觀察、思考身邊的實物,從而直觀、準確地歸納出直線與平面有三種位置關系:(1)直線在平面內——有無數(shù)個公共點(2)直線與平面相交——有且只有一個公共點(3)直線在平面平行——沒有公共點指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α2、引導學生對生活實例以及對長方體模型的觀察、思考,準確歸納出兩個平面之間有兩種位置關系:(1)兩個平面平行——沒有公共點(2)兩個平面相交——有且只有一條公共直線用類比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論