審計(jì)與技術(shù)報(bào)告 2019年 -Audit and technology_第1頁(yè)
審計(jì)與技術(shù)報(bào)告 2019年 -Audit and technology_第2頁(yè)
審計(jì)與技術(shù)報(bào)告 2019年 -Audit and technology_第3頁(yè)
審計(jì)與技術(shù)報(bào)告 2019年 -Audit and technology_第4頁(yè)
審計(jì)與技術(shù)報(bào)告 2019年 -Audit and technology_第5頁(yè)
已閱讀5頁(yè),還剩38頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ThinkAhead

CHARTEREDACCOUNTANTSTMAUSTRALIA+NEWZEALAND

Auditandtechnology

June2019

AboutACCA

ACCA(theAssociationofCharteredCertifiedAccountants)istheglobal

bodyforprofessionalaccountants,offeringbusiness-relevant,first-choice

qualificationstopeopleofapplication,abilityandambitionaroundtheworldwhoseekarewardingcareerinaccountancy,financeandmanagement.

ACCAsupportsits219,000membersand527,000students(includingaffiliates)in179

countries,helpingthemtodevelopsuccessfulcareersinaccountingandbusiness,withtheskillsrequiredbyemployers.ACCAworksthroughanetworkof110officesandcentresand7,571ApprovedEmployersworldwide,and328approvedlearningproviderswhoprovidehighstandardsoflearninganddevelopment.

Throughitspublicinterestremit,ACCApromotesappropriateregulationofaccountingand

conductsrelevantresearchtoensureaccountancycontinuestogrowinreputationandinfluence.

ACCAhasintroducedmajorinnovationstoitsflagshipqualificationtoensureitsmembersandfuturememberscontinuetobethemostvalued,uptodateandsought-afteraccountancy

professionalsglobally.

Foundedin1904,ACCAhasconsistentlyhelduniquecorevalues:opportunity,diversity,innovation,integrityandaccountability.

Moreinformationishere:

AboutCharteredAccountantsAustraliaandNewZealand

CharteredAccountantsAustraliaandNewZealand(CAANZ)isaprofessional

bodycomprisedofover120,000diverse,talentedandfinanciallyastutememberswhoutilisetheirskillseverydaytomakeadifferencefor

businessestheworldover.

Membersareknownfortheirprofessionalintegrity,principledjudgment,financialdiscipline

andaforward-lookingapproachtobusinesswhichcontributestotheprosperityofournations.Wefocusontheeducationandlifelonglearningofourmembers,andengageinadvocacyandthoughtleadershipinareasofpublicinterestthatimpacttheeconomyanddomesticand

internationalmarkets.WeareamemberoftheInternationalFederationofAccountants,andareconnectedgloballythroughthe800,000-strongGlobalAccountingAllianceandChartered

AccountantsWorldwidewhichbringstogetherleadingInstitutesinAustralia,Englandand

Wales,Ireland,NewZealand,ScotlandandSouthAfricatosupportandpromoteover320,000CharteredAccountantsinmorethan180countries.

Moreinformationishere:

ACCAandCAANZcreatedastrategicallianceinJune2016,formingoneofthelargestaccountingalliancesintheworld.Itrepresents800,000currentandnextgenerationaccountingprofessionalsacross180countriesandprovidesafullrangeofaccountingqualificationstostudentsand

business.Together,ACCAandCAANZrepresentthevoiceofmembersandstudents,sharingacommitmenttoupholdthehighestethical,professionalandtechnicalstandards.

?TheAssociationofCharteredCertifiedAccountants

Auditandtechnology

Aboutthisreport

Thisreportprovidesanoverviewofsomeofthevarioustechnologiesthatcurrentlyaffectorarelikelytoaffecttheauditprofessioninthenearfutureandwhatthismeansforauditorsaspeople.Thereportissupportedbyexistingresearch,paneldiscussionsheldinGreece,CzechRepublicandSlovakiaandbyinterviewsofleadingpractitioners.

ACKNOWLEDGEMENTS

ACCAandCAANZwouldliketothankMickJames,theAuditandTechnologyeventpanellistsheldinGreece,CzechRepublicandSlovakiaandtheintervieweesfortheirvaluableinputonthisreport.

4

Foreword

MaggieMcGhee

ExecutiveDirectorGovernance,ACCA

SimonGrant

GroupExecutive,AdvocacyandProfessionalStanding,CAANZ

Technologyistransformingtheaccountancyprofession,andhasthepotentialtorevolutioniseaudit.

Roboticprocessautomation,dataanalytics,artificialintelligence,

machinelearning,distributedledgertechnology…tonamebuta

few:aseeminglyendlesslistoftransformationaltechnologiesat

varyingstagesofevolutionisalreadyhaving,andwillcontinueto

have,anindelibleimpactontheauditprocess.Technologyofcourseisneverthepanaceatoresolvingallthecurrentchallengesinaudits,orconverselyseizingallofitsfutureopportunities.

Likealltransformationalstories,technologyintheauditstoryistheenabler;anenablertorenewprocessesthatimprovequalityand

increaseefficiency.Itisalsoacatalystthatwillhelpshiftthefocusoftheauditprocessfromaretrospectiveviewtoonewhichis

prospective,enablingmuchdeeperinsightstoclientsandan

enrichednarrativeoncorporateperformanceanditssustainability

forthefuture.Yetitisthenexusofemergingtechnologywithhumanendeavour,skillandjudgementwhererealfuturevaluefromauditingwillbeunlocked.Inthefaceofexplodingtechnologies,audit

remainsatitsheartaveryhumanactivity.Thatsaid,digital

developmentscouldhaveprofoundimplicationsforhowauditors

conducttheiractivities,aswellaspotentiallyraisingnewethicalandmoralconsiderations.

Thisreportassessesthetechnologieshavingmostimpactonthe

auditprofessionasweknowittoday.Drawingonexistingresearch

andexploringtheviewsofleadingpractitioners,itprovidesan

understandingofhowthechangingbusinessenvironmentisshapingtechnologicalchangeinauditing.Italsoprovidesauniquesummaryofhowdifferenttechnologiescouldbeexpectedtoimpactitsfuture.Wehopeitalsoprovidesinsightsforbothbusinessesandauditors

themselvesonhowtheymayadaptmosteffectivelyinthefaceofthissignificantchange.

Contents

Executivesummary6

1.Whatisdrivingtechnologicalchangeinaudit?7

2.Whichtechnologiesarechangingaudit?9

3.Whatdoesthismeanforauditorsaspeople?16

4.Conclusionandkeymessages19

References20

6

Executivesummary

Thelatestadvancesintechnologypromisesignificantbenefitsfortheauditprofession,witha

numberofkeydriverssignallingtheneedfortechnologicalchangeinaudit.Suchdriversincludetherapidincreaseinvolumeofdata,changesinbusinessmodels,theshifttowardsautomationandthedemandforaproactiveandforward-lookingapproachtoaudit.Thesedevelopments

requireauditorstobetechnologicallysoundtoenablethemtocontinueservicingbusinessesandtoexecutehighqualityaudits.

Theseconclusionsaresupportedby

paneldiscussionsheldinGreece,theCzechRepublic,andSlovakia,with

panellistsrepresentingauditpractice,auditregulatorsandthebusinessside,alongwithtechnologyexperts.The

reportisalsosupportedbyinterviewswithauditpractitionersandtechnologyexpertsintheauditprofession.

Inthisreport,ACCAandCAANZprovideanoverviewofthevarioustechnologiesthatcurrentlyaffectorarelikelytoaffecttheauditprofessioninthenearfuture.

Suchtechnologiesincludedistributed

ledgertechnology(DLT),dataanalytics,roboticprocessautomation(RPA),dronestechnology,artificialintelligence(AI)andmachinelearning(ML),naturallanguageprocessing(NLP),anddeeplearning(DL).Referenceisalsomadetosmartcontractsandcloudtechnologies.

Ourresearchfoundauditorsneedingtounderstandthevarioustechnologiesusedbybusinesses,andadapttothechangesintheirbusinessmodels.

Dataanalyticswasfoundtobethemostmatureofthetechnologiescurrentlyusedbymostfirms,whilemachinelearningisstillnotatthestagewhereitisembeddedineverydaypractice.ACCAandCAANZalsoexploredwhatthismeansfor

auditorsaspeople,withthehuman

relationshipbetweenbusinessand

auditoremphasised,becausethisremainscentraltoauditing.Insum,theauditors

ofthefutureshouldbetechnologically

soundwithexcellentprojectmanagementskillsandabletoadapttochange.

7

1.

Whatisdrivingtechnological

changeinaudit?

INCREASEINVOLUMEOFDATA

Thevolumeoftransactionsanddatainbusinesseshasincreaseddramatically

since2016andisexpectedtokeep

increasinginthefuture.Ithasbeen

estimatedthatover90%oftheworld’s

datahasbeengeneratedsince2016,

andsignificantamountsofitarefinancialdata(Marr2018).

Thisrapidincreaseinthevolumeof

datarequiresauditorstobeequipped

withthelatestavailabletechnological

toolstoanalyseamuchhighervolume

ofdataintheirauditsthanhaspreviouslybeenthecase.

CHANGESINBUSINESSMODELS

Businessesacrossalmosteveryindustry

areinthefrontline,experiencingatfirsthandthedisruptivechangesthatarealsoaffectingtheirauditors.Disruptivechange

needstobedistinguishedfrom

innovationandtechnologyperse:thekeytodisruptionisthatitcreatesinnovationinbusinessmodels,newwaysofworkinginmarketsandnewsourcesofvalue.

Disruptioncanbeenabledbytechnologybutneednotinvolvetechnological

breakthroughs:itcaninvolvesimply

puttingexistingtechnologiestogetherinanewway.Forexample,afooddeliveryappsuchasJustEatorDeliveroorestson

someverybasicunderlyingtechnology

–kitchens,bicyclesandasmartphone

app–butputsthemtogetherinaway

thatradicallychangesthewayusersorderfood:aggregatingrestaurantsattheuserendandallowingnewplayerstoenter

themarketattheother,orserviceitindifferentways(‘darkkitchens’).

‘Auditorsmustbeabletoadapttothechangesinbusinessmodelsoftheirclients.’

JurajSekera,FinanceDirector,VertivSlovakia

Suchtechnologicalchangesinbusinessesandtheirbusinessmodelsrequirethe

attentionofauditorsofanysizeincludingsmallandmedium-sizedpractices(SMPs).Forexample,start-upbusinessesnow

tendtohavebusinessmodelsbasedonadvancedtechnologies.Complexauditchallengescouldthereforecomefromsmallerbusinessestoo.

‘Bothourauditorsandusarealreadyusingadvanceanalyticsandweexpecttoadoptblockchaintechnologyassoonasthesupplychainofthesteeltradeadoptsit.’

MichalisSamonas,CFO,SIDMAS.A.Greece

‘UnderstandinghowtechnologiessuchasBlockchain[and]MachineLearningworkisnecessarytoenableauditorstoassessandrespondtothecurrentandprospectiverisksoftheorganisations

thatplacetheirtrustinus.’

DimitrisSourbis,AssurancePartner,PwC

SHIFTTOWARDSAUTOMATION

Themostimmediateimpactof

technologyontheprofessionisinthe

automationoreveneliminationofmanualandroutinetasks.Thismovementis

acceleratedbecauseithasmultiple

drivers.Theshifttocloud-based

accountingsystemsandtheattendant

standardisationofprocesseshasmade

datamoreeasilyandmorewidely

available,easiertomovebetween

systems,easiertomanipulateand

analyse,andlesspronetocorruptionanderrors.Forexample,wheredatacannotmoveseamlesslybetweensystems,theuseofroboticprocessautomation(RPA)

canremovetheneedformanual

interventiontocoverthe‘lastmile’.

Despitethis,thereseemstobelittle

appetitefor‘human-free’audit–

automationcanreduceerrorsand

spotpatterns,butthatmerelyprovides

8

Auditandtechnology|1.Whatisdrivingtechnologicalchangeinaudit?

70%

ofthegeneralpublic

across11countries

believethataudit

shouldevolvetopreventcorporatefailure

theopportunityforindividualsto

exercisethoughtandjudgement,and

tobringintoplayotherskillssuchas

communication,persuasionandempathy.

Auditorsmayfindtheyareasked

tolookintofeweranomalies–butthesewillbetheonesthatcount.Itseemsthattheroleoftheauditorasfilter,narratorandindependentchallengingvoice

remainssecure.

THEDEMANDFORAPROACTIVE

ANDFORWARD-LOOKINGAPPROACHINAUDIT

TheuseofadvancedtechnologiessuchasAIandML,blockchainanddata

analyticspromisesatransformationintheauditprofession,changingauditfromareactiveandbackward-lookingexercisetoaproactive,constantsourceof

forward-lookinginsightsthatcanbeused

allthetime,withtheauditorasthecustodianandinterpreterofthe

underlyingdatafoundation.

Eveninitstraditionalcontext,technologynowoffersanopportunitytoproduce

higher-qualityauditsthatbetterservefortheirexistingpurpose.

‘Inordertomeetsociety’sexpectationsoftodayandtoremainrelevantwithintheenvironmentweoperate,wehave

theresponsibilityoftransformingthe

waywedeliveronourobligationto

thepublic.Thistransformationincludesourresponsetotheadvancesof

technology-basedsolutions.’

DimitrisSourbis,AssurancePartner,PwC

ACCA’sreportClosingtheExpectation

GapinAuditfoundthat55%ofthe

generalpublicacross11countriesbelievethat,ifauditorsfollowedtherequirementsofexistingauditingstandards,theycouldpreventcorporatefailure(ACCA2019a).Furthermore,70%believethataudit

shouldevolvetopreventcorporatefailure.Althoughsomemayreasonablyarguethatsuchdemandsareunrealistic,technologycouldwellhelptosatisfythepublic

demand,atleastpartly,inthefuture.

AnexamplewouldbetheuseofMLinriskassessment,‘supervisedlearning

algorithmscanbeusedtohelpidentifyspecifictypesorcharacteristicsthat

warrantgreaterscrutinyandimprovetargetingareasoffocusfortheaudit.’(ACCA2019b).

9

2.

are

Whichtechnologieschangingaudit?

Businessesacrossalmosteveryindustryareexperiencingatfirsthandthedisruptivechangesthatarealsoaffectingtheirauditors.Thischapterexploreswhichadvancedtechnologiesare

impactingtheauditprofession,referringtoboththetoolsavailabletoauditorsandthesystemsthatneedtobeaudited.

InApril2019,ACCAsurveyedmembers

andaffiliatesabouttheirunderstanding

oftermssuchasartificialintelligence(AI),machinelearning(ML),naturallanguageprocessing(NLP),dataanalyticsandroboticprocessautomation(RPA).Onaverageforanygiventerm,62%ofrespondentshadnotheardofit,orhadheardthetermbutdidnotknowwhatitwas,orhadonlya

basicunderstanding.Onaverage,only13%ofrespondentsclaimeda‘high’or‘expertlevel’ofunderstandingoftheseterms.

There’saneedforgreaterawarenessofwhatthesetechnologiesareandtheirimplicationfortheauditprofession.

ARTIFICIALINTELLIGENCE(AI)

AIisoftendescribedas‘a(chǎn)nevolving

technology’thatisequippingcomputersystemswithsomethingakintohuman

intelligence,butitisbetterseenasan

umbrellatermforagroupoftechnologiesthatcanbecombinedindifferentways,

whetherfordrivingyourcar,controllingyourcentralheating,ormanagingyourinvestmentportfolio.Itisalsothesubjectofalargeamountofhype,with‘human-likeintelligence’predictedtoappearin2029(orwhateverthecurrentdateisplustenyears)andeitherdrasticallyreducing

theworkforceordestroyingusall.

AccordingtoElonMusk:‘withartificialintelligencewe’resummoningthe

demon’(Finamore,E.andDuttaK2014).

Itcouldbearguedthatbecauseofa

lackofunderstandingofconceptssuchas‘intuition’and‘thought,’wedonotevenknowwhatitiswearetryingto

emulate.Isintelligencewhatis

measuredbyan‘IntelligenceQuotient’(IQ)?Or,indevelopingAI,shouldwebetryingtoemulateotherquotients,suchasan‘EmotionalQuotient’(EQ).

‘Itisclearthatsometaskswillnolongerbedonebytheauditors.Inthelongterm,itislikelythattheprofessionwillseea

shiftinitsfocuswithmoreemotional

intelligenceexpectedfromauditorsratherfocusingondatatesting.’

MichalStepan,AssuranceDirector,DeloitteCzechRepublic

The‘intelligence’inAIoftenconstitutesacombinationofprocessingpowerandaccesstodata:forinstance,acomputerwillplayagamesuchaschessby

analysingallthepossibleoutcomesofamove,usingdatasetsfrompastgamesandselectingthewinningoption.

ButthatfactalonemakesAIhighly

usefultopeople:itenablestheanalysisofentirepopulationsofdatatoidentifypatternsorexceptions.Auditorsare

freedfrommundanetasksandcanfocustheirtimeondeployingtheirskills,

trainingandjudgement:although

technologyismakingprogressinareas

suchasspeechprocessingandsentimentanalysis,professionaljudgementismuchhardertoapplytechnologyto.

ROBOTICPROCESSAUTOMATION

(RPA)

RPAisoftenmistakenlythoughtofasaformofAIbutthe‘robots’are

softwareroutinesthataremorelikeverysophisticatedExcelspreadsheetmacrosthangenuineAI.

AshighlightedinACCA’sjointreport

withCAANZandKPMGEmbracing

roboticautomationduringtheevolutionoffinance,‘RPAissoftwarethatcan

beeasilyprogrammedorinstructedbyenduserstoperformhigh-volume,repeatable,rules-basedtasksin

today’sworldwheremultipleloosely

integratedsystemsarecommonplace.’(ACCAetal.2018).

10

RPAiscommonlyusedwhentheoutputofonefinancialprocessneedstobeinputintoanother,orwheremultiplesourcesofinformationneedtobeconsulted.Asa

result,itissometimesreferredtoas

‘swivelchairautomation’,conjuringup

theimageofanemployeeswivellingtheirchairaroundastheyconsultmultiple

systemsandre-keyandcheckinformation.

Auditandtechnology|2.Whichtechnologiesarechangingaudit?

Thenextstepfor

auditorsandfinanceistoapplyAIandMLalgorithmstoimprovethequalityofanalysisandforecasting,andincreasetherateof

frauddetection.

Suchworkisrepetitive,mundane,time

consumingand,whendoneby

individuals,pronetoerror.Itisalso

difficulttoscaletocopewithvariationsinworkload.Aclassicexamplewouldbe

processingtimesheetinformationfromseasonallyemployedtemporarystaff.

Onesolutionistodeployorleasea

‘robot’,asoftwareroutinethatpreciselymimicstheactionsofthechair-swivellingpersonshiftingbetweensystems.Lookingbacktothetimesheetexample,therobotwouldtaketheinformationgatheredbyopticalcharacterrecognition(OCR)fromthepaperrecordsandfeeditintothe

payrollsystem.Becauseitmimicsa

processratherthananalysingdata,RPA

itselfisnotAI,whichcouldbeusedlatertolookfortheanomaliesthatpreviouslyahumanoperatormighthavehadtospot.

RPAoffersmanybenefits:therobotsworknon-stopandarefaster,moreaccurate

andscalable.Nonetheless,therearealsoquestionsaboutaccountabilityand

ownershipoftheRPAprocessand

securityofthedatathatpassesthroughit.

Thereisalsothequestionofwhether

RPAsimplyperpetuatesinadequate

processesthatshouldhavebeen

overhauled.Wecandistinguishbetween‘goodRPA’,whichclosesgapsand

contributestostraight-throughdata

processingand‘badRPA’,whichsimplydisguisestheflawsinobsolescentor

badlyimplementedsystems.Inshort,fixtheprocessfirstbeforeapplyingRPA.

DATAANALYTICS

Analyticaltoolshavelongbeenappliedtothedataderivedfromaccountingandoperationalsystems.

Somefirmsarealreadyusingdataanalyticsaspartoftheirtransactionstesting,

graduallymovingawayfromtraditional

samplingtechniques.Dataanalyticsallowauditorstouse100%ofapopulation’s

transactionswhenperformingtheirtests.

‘UsingD&Awemaketheanalysisofthe

pastmoreinsightful.Ratherthan

samplingtransactionsdatatotesta

snapshotofactivities,wecannowanalyzealltransactionsprocessed,allowingustoidentifyanomaliesanddrilldownontheitemsthatshowthegreatestpotentialofbeinghighrisk.Oursystemsautomatethisprocess,increasingitsabilitytoproducehighqualityauditevidence.’(KPMG2015).

‘Iexpectthatmyauditorswillno

longertestasampleoftransactions,for

example100items,andconsiderthisto

besufficientevidencetoformaconclusionfortheentirepopulation,wheninfactwehavetensofthousandsoftransactions

cominginandoutonadailybasis.’

JurajStriezenec,CFO,K

However,theUKFinancialReportingCouncil(FRC)hasfoundthat‘theuseofdataanalyticsintheauditisnotasprevalentasthemarketmightexpect’(FRC2017)anditisnotyetused

consistentlyacrosstheentireledger.

Evenwhereitisused–suchasinjournalentrytesting,auditorswillstillneed

toconsidertheissueofcompleteness,aswellastheincreasingamountof

corporatereportingthatdoesnot

derivefromtransactionsintheledger.

‘Beingabletotest100%ofapopulationdoesnotimplythattheauditorisabletoprovidesomethingmorethanreasonable

11

Auditandtechnology|2.Whichtechnologiesarechangingaudit?

‘Weareinvestingin

varioustechnologiestosupport“digitalaudit”,withdataanalytics

beingatthemomentthemostprominent.’

LeonidasHatzikonstantis,

PartnerEYAdvisoryServices,Greece

assuranceopinionorthatthemeaningof“reasonableassurance”changes.’(IAASB2016)

ThenextstepforauditorsandfinanceistoapplyAIandMLalgorithmstoimprovethequalityofanalysisandforecasting,

andincreasetherateoffrauddetection.

Thebusiness‘datawarehouse’is

increasinglybeingsupplementedby

informationdrawnfromavarietyofpublicand/orproprietarysources,oftenusing

cloud-basedapplicationscombinedwithdesktopanalyticaltools.Augmenting

thesetoolswithDLandNLPincreasestherangeofdatathatcanbehandled,fromwrittentextspeechorevenimages.

Theabilitytoanalysedataacrossand

outsidecorporatedatasilospromisestoenhancetheabilityoforganisationsto

spotopportunities,headoffthreats,

makebetterdecisionsandenablethis

processtobe‘democratised’throughouttheorganisation.

Auditorscanuse‘dataminingsoftware’todrilldownandidentifyanomalies–

possiblyaidedbyAI–focusingresourcesonidentifyingrisksinadditionto

monitoring‘businessasusual’activities.

MACHINELEARNING(ML)

Amajorchallengetotheauditprofessionhasbeentheextremeproliferationof

data,accompaniedbyalessextremebutnonethelessrapidlyexpandingvolumeofregulation.

AccordingtoACCA’sreportMachineLearning:MoreSciencethanFiction:

‘Therapidgrowthinthevolumeof

financialtransactions,ifnotproperly

managed,couldposeathreattotheworkofaccountants.Forauditors,thismay

relatetothesampletheyneedanditsabilitytoberepresentativeofthe

population,enablingthemtoformconclusionsthatcanbegeneralisedbeyondthesample’(ACCA2019b).

‘Infact,technologylikemachinelearningcouldgobeyondthatwiththepossibilityforreviewingentirepopulationstoassisttheauditortotestforitemsthatare

outsidethenorm’(ACCA2019b).

MLusesstatisticalanalysestogeneratepredictionsormakedecisionsfromtheanalysisofalargehistoricaldataset.Aclassicexamplewouldbecreditscoring

decisionsforloans.Theaccounting

softwarecompanyXerohasimplementedMLtomakecodingdecisionsforinvoices.MLcanachievesurprisinglevelsof

accuracyquitequickly:inthecaseofXero’ssoftware,thesystemachieves80%accuracyafterlearningfromjustfourinvoices.

ML‘predictions’canbebothbackward

andforward-looking.Ithasclear

applicationsinriskmanagementandthedetectionoffraudandinaccuracyby

comparinghistoricaldatasetswithcurrentdata,whichcanhelpwithriskassessment.Oritcanlookforward,predicting,for

example,thelikelyfuturevalueofanasset.

Inpractice,theusefulnessofMLis

cruciallydependentonthedatait‘learns’from.Thismeansthepossibilityofbiasiseverpresent.Exampleshavecometo

lightwhereMLhasintroducedbiasintoareassuchascredit-scoringandCV

assessment.Themachinecorrectlyseesthatapreviouslyexcludedgrouphadnotcompletedmanysuccessfulloan

transactionsorrisenveryhighin

managementandwronglyconcludedthatthedefiningcharacteristicsofthose

groups,suchasgender,werepredictorsofpoorfutureperformance.

AnexampleusingMLinauditcanbe

foundinPwC’sreportConfidenceinthefuture:Humanandmachinecollaborationintheauditreport.Asperthisexample

‘companyAwaswayoutoflinewiththepeergroupbenchmarksonaparticularpoint.Thisdataisthensharedwiththeauditteam,whocandecidewhetherthatvarianceisreallyananomalyandifso,

whatcausedit.

Theteam’sdecisionabouttheanomalyanditscauseisthenfedbacktothe

machine,whichis‘taught’howto

respondtosimilarrelationshipsinfuture.Andthemorethisexerciseiscarriedout,thebetterthemachinewillgetat

spottingrealanomalies—meaningwe’llbebetterabletoidentifyunusual

patternsandanomaliesinhugeamountsofdatainaninstant.’(PwC2017).

Theself-instructingnatureofMLmeansthatdecision-makingcanoftenbea‘blackbox’,withnooneabletosayprecisely

howdecisionshavebeenarrivedat.

Thereisalsothedangerthatduringthelearningstage–whenMLisshadowinghumanauditors–itwillpickupany

humanerrorsandrepeatthemeternally.

12

Auditandtechnology|2.Whichtechnologiesarechangingaudit?

IntheeraofBig

Data,thestructured

informationaccessibletoauditorsisonly

afragmentoran

abstractionofthemuchwideruniverseofdata.

MLthereforeneedstobevalidatedinsomeway:itisariskaswellasatool.

Thisraisesthepossibilitythatthe

challengingandtestingofinternal

algorithmsmaybecomepartofthe

externalauditor’srole,withamuchwiderremitthanassessingaccuracy:asthe

HarvardBusinessReviewcomments:

‘theauditor’staskshouldbethemore

routineoneofensuringthatAIsystemsconformtotheconventionsdeliberatedandestablishedatthesocietaland

governmentallevel’(Guszczaetal.2018).

NATURALLANGUAGEPROCESSING(NLP)

NLPreferstotheabilityofthecomputertorecogniseandunderstandhumanspeech

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論