版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ThinkAhead
CHARTEREDACCOUNTANTSTMAUSTRALIA+NEWZEALAND
Auditandtechnology
June2019
AboutACCA
ACCA(theAssociationofCharteredCertifiedAccountants)istheglobal
bodyforprofessionalaccountants,offeringbusiness-relevant,first-choice
qualificationstopeopleofapplication,abilityandambitionaroundtheworldwhoseekarewardingcareerinaccountancy,financeandmanagement.
ACCAsupportsits219,000membersand527,000students(includingaffiliates)in179
countries,helpingthemtodevelopsuccessfulcareersinaccountingandbusiness,withtheskillsrequiredbyemployers.ACCAworksthroughanetworkof110officesandcentresand7,571ApprovedEmployersworldwide,and328approvedlearningproviderswhoprovidehighstandardsoflearninganddevelopment.
Throughitspublicinterestremit,ACCApromotesappropriateregulationofaccountingand
conductsrelevantresearchtoensureaccountancycontinuestogrowinreputationandinfluence.
ACCAhasintroducedmajorinnovationstoitsflagshipqualificationtoensureitsmembersandfuturememberscontinuetobethemostvalued,uptodateandsought-afteraccountancy
professionalsglobally.
Foundedin1904,ACCAhasconsistentlyhelduniquecorevalues:opportunity,diversity,innovation,integrityandaccountability.
Moreinformationishere:
AboutCharteredAccountantsAustraliaandNewZealand
CharteredAccountantsAustraliaandNewZealand(CAANZ)isaprofessional
bodycomprisedofover120,000diverse,talentedandfinanciallyastutememberswhoutilisetheirskillseverydaytomakeadifferencefor
businessestheworldover.
Membersareknownfortheirprofessionalintegrity,principledjudgment,financialdiscipline
andaforward-lookingapproachtobusinesswhichcontributestotheprosperityofournations.Wefocusontheeducationandlifelonglearningofourmembers,andengageinadvocacyandthoughtleadershipinareasofpublicinterestthatimpacttheeconomyanddomesticand
internationalmarkets.WeareamemberoftheInternationalFederationofAccountants,andareconnectedgloballythroughthe800,000-strongGlobalAccountingAllianceandChartered
AccountantsWorldwidewhichbringstogetherleadingInstitutesinAustralia,Englandand
Wales,Ireland,NewZealand,ScotlandandSouthAfricatosupportandpromoteover320,000CharteredAccountantsinmorethan180countries.
Moreinformationishere:
ACCAandCAANZcreatedastrategicallianceinJune2016,formingoneofthelargestaccountingalliancesintheworld.Itrepresents800,000currentandnextgenerationaccountingprofessionalsacross180countriesandprovidesafullrangeofaccountingqualificationstostudentsand
business.Together,ACCAandCAANZrepresentthevoiceofmembersandstudents,sharingacommitmenttoupholdthehighestethical,professionalandtechnicalstandards.
?TheAssociationofCharteredCertifiedAccountants
Auditandtechnology
Aboutthisreport
Thisreportprovidesanoverviewofsomeofthevarioustechnologiesthatcurrentlyaffectorarelikelytoaffecttheauditprofessioninthenearfutureandwhatthismeansforauditorsaspeople.Thereportissupportedbyexistingresearch,paneldiscussionsheldinGreece,CzechRepublicandSlovakiaandbyinterviewsofleadingpractitioners.
ACKNOWLEDGEMENTS
ACCAandCAANZwouldliketothankMickJames,theAuditandTechnologyeventpanellistsheldinGreece,CzechRepublicandSlovakiaandtheintervieweesfortheirvaluableinputonthisreport.
4
Foreword
MaggieMcGhee
ExecutiveDirectorGovernance,ACCA
SimonGrant
GroupExecutive,AdvocacyandProfessionalStanding,CAANZ
Technologyistransformingtheaccountancyprofession,andhasthepotentialtorevolutioniseaudit.
Roboticprocessautomation,dataanalytics,artificialintelligence,
machinelearning,distributedledgertechnology…tonamebuta
few:aseeminglyendlesslistoftransformationaltechnologiesat
varyingstagesofevolutionisalreadyhaving,andwillcontinueto
have,anindelibleimpactontheauditprocess.Technologyofcourseisneverthepanaceatoresolvingallthecurrentchallengesinaudits,orconverselyseizingallofitsfutureopportunities.
Likealltransformationalstories,technologyintheauditstoryistheenabler;anenablertorenewprocessesthatimprovequalityand
increaseefficiency.Itisalsoacatalystthatwillhelpshiftthefocusoftheauditprocessfromaretrospectiveviewtoonewhichis
prospective,enablingmuchdeeperinsightstoclientsandan
enrichednarrativeoncorporateperformanceanditssustainability
forthefuture.Yetitisthenexusofemergingtechnologywithhumanendeavour,skillandjudgementwhererealfuturevaluefromauditingwillbeunlocked.Inthefaceofexplodingtechnologies,audit
remainsatitsheartaveryhumanactivity.Thatsaid,digital
developmentscouldhaveprofoundimplicationsforhowauditors
conducttheiractivities,aswellaspotentiallyraisingnewethicalandmoralconsiderations.
Thisreportassessesthetechnologieshavingmostimpactonthe
auditprofessionasweknowittoday.Drawingonexistingresearch
andexploringtheviewsofleadingpractitioners,itprovidesan
understandingofhowthechangingbusinessenvironmentisshapingtechnologicalchangeinauditing.Italsoprovidesauniquesummaryofhowdifferenttechnologiescouldbeexpectedtoimpactitsfuture.Wehopeitalsoprovidesinsightsforbothbusinessesandauditors
themselvesonhowtheymayadaptmosteffectivelyinthefaceofthissignificantchange.
Contents
Executivesummary6
1.Whatisdrivingtechnologicalchangeinaudit?7
2.Whichtechnologiesarechangingaudit?9
3.Whatdoesthismeanforauditorsaspeople?16
4.Conclusionandkeymessages19
References20
6
Executivesummary
Thelatestadvancesintechnologypromisesignificantbenefitsfortheauditprofession,witha
numberofkeydriverssignallingtheneedfortechnologicalchangeinaudit.Suchdriversincludetherapidincreaseinvolumeofdata,changesinbusinessmodels,theshifttowardsautomationandthedemandforaproactiveandforward-lookingapproachtoaudit.Thesedevelopments
requireauditorstobetechnologicallysoundtoenablethemtocontinueservicingbusinessesandtoexecutehighqualityaudits.
Theseconclusionsaresupportedby
paneldiscussionsheldinGreece,theCzechRepublic,andSlovakia,with
panellistsrepresentingauditpractice,auditregulatorsandthebusinessside,alongwithtechnologyexperts.The
reportisalsosupportedbyinterviewswithauditpractitionersandtechnologyexpertsintheauditprofession.
Inthisreport,ACCAandCAANZprovideanoverviewofthevarioustechnologiesthatcurrentlyaffectorarelikelytoaffecttheauditprofessioninthenearfuture.
Suchtechnologiesincludedistributed
ledgertechnology(DLT),dataanalytics,roboticprocessautomation(RPA),dronestechnology,artificialintelligence(AI)andmachinelearning(ML),naturallanguageprocessing(NLP),anddeeplearning(DL).Referenceisalsomadetosmartcontractsandcloudtechnologies.
Ourresearchfoundauditorsneedingtounderstandthevarioustechnologiesusedbybusinesses,andadapttothechangesintheirbusinessmodels.
Dataanalyticswasfoundtobethemostmatureofthetechnologiescurrentlyusedbymostfirms,whilemachinelearningisstillnotatthestagewhereitisembeddedineverydaypractice.ACCAandCAANZalsoexploredwhatthismeansfor
auditorsaspeople,withthehuman
relationshipbetweenbusinessand
auditoremphasised,becausethisremainscentraltoauditing.Insum,theauditors
ofthefutureshouldbetechnologically
soundwithexcellentprojectmanagementskillsandabletoadapttochange.
7
1.
Whatisdrivingtechnological
changeinaudit?
INCREASEINVOLUMEOFDATA
Thevolumeoftransactionsanddatainbusinesseshasincreaseddramatically
since2016andisexpectedtokeep
increasinginthefuture.Ithasbeen
estimatedthatover90%oftheworld’s
datahasbeengeneratedsince2016,
andsignificantamountsofitarefinancialdata(Marr2018).
Thisrapidincreaseinthevolumeof
datarequiresauditorstobeequipped
withthelatestavailabletechnological
toolstoanalyseamuchhighervolume
ofdataintheirauditsthanhaspreviouslybeenthecase.
CHANGESINBUSINESSMODELS
Businessesacrossalmosteveryindustry
areinthefrontline,experiencingatfirsthandthedisruptivechangesthatarealsoaffectingtheirauditors.Disruptivechange
needstobedistinguishedfrom
innovationandtechnologyperse:thekeytodisruptionisthatitcreatesinnovationinbusinessmodels,newwaysofworkinginmarketsandnewsourcesofvalue.
Disruptioncanbeenabledbytechnologybutneednotinvolvetechnological
breakthroughs:itcaninvolvesimply
puttingexistingtechnologiestogetherinanewway.Forexample,afooddeliveryappsuchasJustEatorDeliveroorestson
someverybasicunderlyingtechnology
–kitchens,bicyclesandasmartphone
app–butputsthemtogetherinaway
thatradicallychangesthewayusersorderfood:aggregatingrestaurantsattheuserendandallowingnewplayerstoenter
themarketattheother,orserviceitindifferentways(‘darkkitchens’).
‘Auditorsmustbeabletoadapttothechangesinbusinessmodelsoftheirclients.’
JurajSekera,FinanceDirector,VertivSlovakia
Suchtechnologicalchangesinbusinessesandtheirbusinessmodelsrequirethe
attentionofauditorsofanysizeincludingsmallandmedium-sizedpractices(SMPs).Forexample,start-upbusinessesnow
tendtohavebusinessmodelsbasedonadvancedtechnologies.Complexauditchallengescouldthereforecomefromsmallerbusinessestoo.
‘Bothourauditorsandusarealreadyusingadvanceanalyticsandweexpecttoadoptblockchaintechnologyassoonasthesupplychainofthesteeltradeadoptsit.’
MichalisSamonas,CFO,SIDMAS.A.Greece
‘UnderstandinghowtechnologiessuchasBlockchain[and]MachineLearningworkisnecessarytoenableauditorstoassessandrespondtothecurrentandprospectiverisksoftheorganisations
thatplacetheirtrustinus.’
DimitrisSourbis,AssurancePartner,PwC
SHIFTTOWARDSAUTOMATION
Themostimmediateimpactof
technologyontheprofessionisinthe
automationoreveneliminationofmanualandroutinetasks.Thismovementis
acceleratedbecauseithasmultiple
drivers.Theshifttocloud-based
accountingsystemsandtheattendant
standardisationofprocesseshasmade
datamoreeasilyandmorewidely
available,easiertomovebetween
systems,easiertomanipulateand
analyse,andlesspronetocorruptionanderrors.Forexample,wheredatacannotmoveseamlesslybetweensystems,theuseofroboticprocessautomation(RPA)
canremovetheneedformanual
interventiontocoverthe‘lastmile’.
Despitethis,thereseemstobelittle
appetitefor‘human-free’audit–
automationcanreduceerrorsand
spotpatterns,butthatmerelyprovides
8
Auditandtechnology|1.Whatisdrivingtechnologicalchangeinaudit?
70%
ofthegeneralpublic
across11countries
believethataudit
shouldevolvetopreventcorporatefailure
theopportunityforindividualsto
exercisethoughtandjudgement,and
tobringintoplayotherskillssuchas
communication,persuasionandempathy.
Auditorsmayfindtheyareasked
tolookintofeweranomalies–butthesewillbetheonesthatcount.Itseemsthattheroleoftheauditorasfilter,narratorandindependentchallengingvoice
remainssecure.
THEDEMANDFORAPROACTIVE
ANDFORWARD-LOOKINGAPPROACHINAUDIT
TheuseofadvancedtechnologiessuchasAIandML,blockchainanddata
analyticspromisesatransformationintheauditprofession,changingauditfromareactiveandbackward-lookingexercisetoaproactive,constantsourceof
forward-lookinginsightsthatcanbeused
allthetime,withtheauditorasthecustodianandinterpreterofthe
underlyingdatafoundation.
Eveninitstraditionalcontext,technologynowoffersanopportunitytoproduce
higher-qualityauditsthatbetterservefortheirexistingpurpose.
‘Inordertomeetsociety’sexpectationsoftodayandtoremainrelevantwithintheenvironmentweoperate,wehave
theresponsibilityoftransformingthe
waywedeliveronourobligationto
thepublic.Thistransformationincludesourresponsetotheadvancesof
technology-basedsolutions.’
DimitrisSourbis,AssurancePartner,PwC
ACCA’sreportClosingtheExpectation
GapinAuditfoundthat55%ofthe
generalpublicacross11countriesbelievethat,ifauditorsfollowedtherequirementsofexistingauditingstandards,theycouldpreventcorporatefailure(ACCA2019a).Furthermore,70%believethataudit
shouldevolvetopreventcorporatefailure.Althoughsomemayreasonablyarguethatsuchdemandsareunrealistic,technologycouldwellhelptosatisfythepublic
demand,atleastpartly,inthefuture.
AnexamplewouldbetheuseofMLinriskassessment,‘supervisedlearning
algorithmscanbeusedtohelpidentifyspecifictypesorcharacteristicsthat
warrantgreaterscrutinyandimprovetargetingareasoffocusfortheaudit.’(ACCA2019b).
9
2.
are
Whichtechnologieschangingaudit?
Businessesacrossalmosteveryindustryareexperiencingatfirsthandthedisruptivechangesthatarealsoaffectingtheirauditors.Thischapterexploreswhichadvancedtechnologiesare
impactingtheauditprofession,referringtoboththetoolsavailabletoauditorsandthesystemsthatneedtobeaudited.
InApril2019,ACCAsurveyedmembers
andaffiliatesabouttheirunderstanding
oftermssuchasartificialintelligence(AI),machinelearning(ML),naturallanguageprocessing(NLP),dataanalyticsandroboticprocessautomation(RPA).Onaverageforanygiventerm,62%ofrespondentshadnotheardofit,orhadheardthetermbutdidnotknowwhatitwas,orhadonlya
basicunderstanding.Onaverage,only13%ofrespondentsclaimeda‘high’or‘expertlevel’ofunderstandingoftheseterms.
There’saneedforgreaterawarenessofwhatthesetechnologiesareandtheirimplicationfortheauditprofession.
ARTIFICIALINTELLIGENCE(AI)
AIisoftendescribedas‘a(chǎn)nevolving
technology’thatisequippingcomputersystemswithsomethingakintohuman
intelligence,butitisbetterseenasan
umbrellatermforagroupoftechnologiesthatcanbecombinedindifferentways,
whetherfordrivingyourcar,controllingyourcentralheating,ormanagingyourinvestmentportfolio.Itisalsothesubjectofalargeamountofhype,with‘human-likeintelligence’predictedtoappearin2029(orwhateverthecurrentdateisplustenyears)andeitherdrasticallyreducing
theworkforceordestroyingusall.
AccordingtoElonMusk:‘withartificialintelligencewe’resummoningthe
demon’(Finamore,E.andDuttaK2014).
Itcouldbearguedthatbecauseofa
lackofunderstandingofconceptssuchas‘intuition’and‘thought,’wedonotevenknowwhatitiswearetryingto
emulate.Isintelligencewhatis
measuredbyan‘IntelligenceQuotient’(IQ)?Or,indevelopingAI,shouldwebetryingtoemulateotherquotients,suchasan‘EmotionalQuotient’(EQ).
‘Itisclearthatsometaskswillnolongerbedonebytheauditors.Inthelongterm,itislikelythattheprofessionwillseea
shiftinitsfocuswithmoreemotional
intelligenceexpectedfromauditorsratherfocusingondatatesting.’
MichalStepan,AssuranceDirector,DeloitteCzechRepublic
The‘intelligence’inAIoftenconstitutesacombinationofprocessingpowerandaccesstodata:forinstance,acomputerwillplayagamesuchaschessby
analysingallthepossibleoutcomesofamove,usingdatasetsfrompastgamesandselectingthewinningoption.
ButthatfactalonemakesAIhighly
usefultopeople:itenablestheanalysisofentirepopulationsofdatatoidentifypatternsorexceptions.Auditorsare
freedfrommundanetasksandcanfocustheirtimeondeployingtheirskills,
trainingandjudgement:although
technologyismakingprogressinareas
suchasspeechprocessingandsentimentanalysis,professionaljudgementismuchhardertoapplytechnologyto.
ROBOTICPROCESSAUTOMATION
(RPA)
RPAisoftenmistakenlythoughtofasaformofAIbutthe‘robots’are
softwareroutinesthataremorelikeverysophisticatedExcelspreadsheetmacrosthangenuineAI.
AshighlightedinACCA’sjointreport
withCAANZandKPMGEmbracing
roboticautomationduringtheevolutionoffinance,‘RPAissoftwarethatcan
beeasilyprogrammedorinstructedbyenduserstoperformhigh-volume,repeatable,rules-basedtasksin
today’sworldwheremultipleloosely
integratedsystemsarecommonplace.’(ACCAetal.2018).
10
RPAiscommonlyusedwhentheoutputofonefinancialprocessneedstobeinputintoanother,orwheremultiplesourcesofinformationneedtobeconsulted.Asa
result,itissometimesreferredtoas
‘swivelchairautomation’,conjuringup
theimageofanemployeeswivellingtheirchairaroundastheyconsultmultiple
systemsandre-keyandcheckinformation.
Auditandtechnology|2.Whichtechnologiesarechangingaudit?
Thenextstepfor
auditorsandfinanceistoapplyAIandMLalgorithmstoimprovethequalityofanalysisandforecasting,andincreasetherateof
frauddetection.
Suchworkisrepetitive,mundane,time
consumingand,whendoneby
individuals,pronetoerror.Itisalso
difficulttoscaletocopewithvariationsinworkload.Aclassicexamplewouldbe
processingtimesheetinformationfromseasonallyemployedtemporarystaff.
Onesolutionistodeployorleasea
‘robot’,asoftwareroutinethatpreciselymimicstheactionsofthechair-swivellingpersonshiftingbetweensystems.Lookingbacktothetimesheetexample,therobotwouldtaketheinformationgatheredbyopticalcharacterrecognition(OCR)fromthepaperrecordsandfeeditintothe
payrollsystem.Becauseitmimicsa
processratherthananalysingdata,RPA
itselfisnotAI,whichcouldbeusedlatertolookfortheanomaliesthatpreviouslyahumanoperatormighthavehadtospot.
RPAoffersmanybenefits:therobotsworknon-stopandarefaster,moreaccurate
andscalable.Nonetheless,therearealsoquestionsaboutaccountabilityand
ownershipoftheRPAprocessand
securityofthedatathatpassesthroughit.
Thereisalsothequestionofwhether
RPAsimplyperpetuatesinadequate
processesthatshouldhavebeen
overhauled.Wecandistinguishbetween‘goodRPA’,whichclosesgapsand
contributestostraight-throughdata
processingand‘badRPA’,whichsimplydisguisestheflawsinobsolescentor
badlyimplementedsystems.Inshort,fixtheprocessfirstbeforeapplyingRPA.
DATAANALYTICS
Analyticaltoolshavelongbeenappliedtothedataderivedfromaccountingandoperationalsystems.
Somefirmsarealreadyusingdataanalyticsaspartoftheirtransactionstesting,
graduallymovingawayfromtraditional
samplingtechniques.Dataanalyticsallowauditorstouse100%ofapopulation’s
transactionswhenperformingtheirtests.
‘UsingD&Awemaketheanalysisofthe
pastmoreinsightful.Ratherthan
samplingtransactionsdatatotesta
snapshotofactivities,wecannowanalyzealltransactionsprocessed,allowingustoidentifyanomaliesanddrilldownontheitemsthatshowthegreatestpotentialofbeinghighrisk.Oursystemsautomatethisprocess,increasingitsabilitytoproducehighqualityauditevidence.’(KPMG2015).
‘Iexpectthatmyauditorswillno
longertestasampleoftransactions,for
example100items,andconsiderthisto
besufficientevidencetoformaconclusionfortheentirepopulation,wheninfactwehavetensofthousandsoftransactions
cominginandoutonadailybasis.’
JurajStriezenec,CFO,K
However,theUKFinancialReportingCouncil(FRC)hasfoundthat‘theuseofdataanalyticsintheauditisnotasprevalentasthemarketmightexpect’(FRC2017)anditisnotyetused
consistentlyacrosstheentireledger.
Evenwhereitisused–suchasinjournalentrytesting,auditorswillstillneed
toconsidertheissueofcompleteness,aswellastheincreasingamountof
corporatereportingthatdoesnot
derivefromtransactionsintheledger.
‘Beingabletotest100%ofapopulationdoesnotimplythattheauditorisabletoprovidesomethingmorethanreasonable
11
Auditandtechnology|2.Whichtechnologiesarechangingaudit?
‘Weareinvestingin
varioustechnologiestosupport“digitalaudit”,withdataanalytics
beingatthemomentthemostprominent.’
LeonidasHatzikonstantis,
PartnerEYAdvisoryServices,Greece
assuranceopinionorthatthemeaningof“reasonableassurance”changes.’(IAASB2016)
ThenextstepforauditorsandfinanceistoapplyAIandMLalgorithmstoimprovethequalityofanalysisandforecasting,
andincreasetherateoffrauddetection.
Thebusiness‘datawarehouse’is
increasinglybeingsupplementedby
informationdrawnfromavarietyofpublicand/orproprietarysources,oftenusing
cloud-basedapplicationscombinedwithdesktopanalyticaltools.Augmenting
thesetoolswithDLandNLPincreasestherangeofdatathatcanbehandled,fromwrittentextspeechorevenimages.
Theabilitytoanalysedataacrossand
outsidecorporatedatasilospromisestoenhancetheabilityoforganisationsto
spotopportunities,headoffthreats,
makebetterdecisionsandenablethis
processtobe‘democratised’throughouttheorganisation.
Auditorscanuse‘dataminingsoftware’todrilldownandidentifyanomalies–
possiblyaidedbyAI–focusingresourcesonidentifyingrisksinadditionto
monitoring‘businessasusual’activities.
MACHINELEARNING(ML)
Amajorchallengetotheauditprofessionhasbeentheextremeproliferationof
data,accompaniedbyalessextremebutnonethelessrapidlyexpandingvolumeofregulation.
AccordingtoACCA’sreportMachineLearning:MoreSciencethanFiction:
‘Therapidgrowthinthevolumeof
financialtransactions,ifnotproperly
managed,couldposeathreattotheworkofaccountants.Forauditors,thismay
relatetothesampletheyneedanditsabilitytoberepresentativeofthe
population,enablingthemtoformconclusionsthatcanbegeneralisedbeyondthesample’(ACCA2019b).
‘Infact,technologylikemachinelearningcouldgobeyondthatwiththepossibilityforreviewingentirepopulationstoassisttheauditortotestforitemsthatare
outsidethenorm’(ACCA2019b).
MLusesstatisticalanalysestogeneratepredictionsormakedecisionsfromtheanalysisofalargehistoricaldataset.Aclassicexamplewouldbecreditscoring
decisionsforloans.Theaccounting
softwarecompanyXerohasimplementedMLtomakecodingdecisionsforinvoices.MLcanachievesurprisinglevelsof
accuracyquitequickly:inthecaseofXero’ssoftware,thesystemachieves80%accuracyafterlearningfromjustfourinvoices.
ML‘predictions’canbebothbackward
andforward-looking.Ithasclear
applicationsinriskmanagementandthedetectionoffraudandinaccuracyby
comparinghistoricaldatasetswithcurrentdata,whichcanhelpwithriskassessment.Oritcanlookforward,predicting,for
example,thelikelyfuturevalueofanasset.
Inpractice,theusefulnessofMLis
cruciallydependentonthedatait‘learns’from.Thismeansthepossibilityofbiasiseverpresent.Exampleshavecometo
lightwhereMLhasintroducedbiasintoareassuchascredit-scoringandCV
assessment.Themachinecorrectlyseesthatapreviouslyexcludedgrouphadnotcompletedmanysuccessfulloan
transactionsorrisenveryhighin
managementandwronglyconcludedthatthedefiningcharacteristicsofthose
groups,suchasgender,werepredictorsofpoorfutureperformance.
AnexampleusingMLinauditcanbe
foundinPwC’sreportConfidenceinthefuture:Humanandmachinecollaborationintheauditreport.Asperthisexample
‘companyAwaswayoutoflinewiththepeergroupbenchmarksonaparticularpoint.Thisdataisthensharedwiththeauditteam,whocandecidewhetherthatvarianceisreallyananomalyandifso,
whatcausedit.
Theteam’sdecisionabouttheanomalyanditscauseisthenfedbacktothe
machine,whichis‘taught’howto
respondtosimilarrelationshipsinfuture.Andthemorethisexerciseiscarriedout,thebetterthemachinewillgetat
spottingrealanomalies—meaningwe’llbebetterabletoidentifyunusual
patternsandanomaliesinhugeamountsofdatainaninstant.’(PwC2017).
Theself-instructingnatureofMLmeansthatdecision-makingcanoftenbea‘blackbox’,withnooneabletosayprecisely
howdecisionshavebeenarrivedat.
Thereisalsothedangerthatduringthelearningstage–whenMLisshadowinghumanauditors–itwillpickupany
humanerrorsandrepeatthemeternally.
12
Auditandtechnology|2.Whichtechnologiesarechangingaudit?
IntheeraofBig
Data,thestructured
informationaccessibletoauditorsisonly
afragmentoran
abstractionofthemuchwideruniverseofdata.
MLthereforeneedstobevalidatedinsomeway:itisariskaswellasatool.
Thisraisesthepossibilitythatthe
challengingandtestingofinternal
algorithmsmaybecomepartofthe
externalauditor’srole,withamuchwiderremitthanassessingaccuracy:asthe
HarvardBusinessReviewcomments:
‘theauditor’staskshouldbethemore
routineoneofensuringthatAIsystemsconformtotheconventionsdeliberatedandestablishedatthesocietaland
governmentallevel’(Guszczaetal.2018).
NATURALLANGUAGEPROCESSING(NLP)
NLPreferstotheabilityofthecomputertorecogniseandunderstandhumanspeech
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年玉林貨運(yùn)從業(yè)資格仿真考題
- 2024商標(biāo)轉(zhuǎn)讓及品牌升級(jí)合同:攜手共進(jìn)品牌升級(jí)之旅3篇
- 2024商混合同范本:商混混凝土生產(chǎn)與質(zhì)量控制合作協(xié)議3篇
- 2025廚房設(shè)備銷(xiāo)售合同版
- 商業(yè)綜合體電力施工合同范本
- 城市公園旁咖啡館租賃合同
- 城市綠化帶擴(kuò)建植樹(shù)合同
- 出入境文件公證辦理規(guī)范
- 智能家居維修員招聘合同模板
- 汽車(chē)研發(fā)中心施工協(xié)議
- 鈸式換能器的共振特性研究
- 《我們?nèi)タ春!烽喿x答案
- 智慧酒店無(wú)人酒店綜合服務(wù)解決方案
- 考研英語(yǔ)一新題型歷年真題(2005-2012)
- 健身房會(huì)籍顧問(wèn)基礎(chǔ)培訓(xùn)資料
- 9脊柱與四肢、神經(jīng)系統(tǒng)檢查總結(jié)
- 秀場(chǎng)內(nèi)外-走進(jìn)服裝表演藝術(shù)智慧樹(shù)知到答案章節(jié)測(cè)試2023年武漢紡織大學(xué)
- 【高分復(fù)習(xí)筆記】王建《現(xiàn)代自然地理學(xué)》(第2版)筆記和課后習(xí)題詳解
- TSGD0012023年壓力管道安全技術(shù)監(jiān)察規(guī)程-工業(yè)管道(高清晰版)
- SMM英國(guó)建筑工程標(biāo)準(zhǔn)計(jì)量規(guī)則中文 全套
- 2023-2024學(xué)年浙江省富陽(yáng)市小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)期末通關(guān)題
評(píng)論
0/150
提交評(píng)論