版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建寧德市2025屆高三第一次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.2.在中,內角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列3.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-24.復數(shù)的虛部為()A.—1 B.—3 C.1 D.25.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.6.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.7.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且8.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.復數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.10.已知向量,,則向量在向量上的投影是()A. B. C. D.11.若,則下列不等式不能成立的是()A. B. C. D.12.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.15.如圖,在長方體中,,E,F(xiàn),G分別為的中點,點P在平面ABCD內,若直線平面EFG,則線段長度的最小值是________________.16.設隨機變量服從正態(tài)分布,若,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.18.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.19.(12分)已知函數(shù).(Ⅰ)當時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調遞減,求實數(shù)的取值范圍.20.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.21.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.22.(10分)為貫徹十九大報告中“要提供更多優(yōu)質生態(tài)產品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據與表格中的所有數(shù)據構成的新樣本的平均數(shù)記為,試比較和的大小.(結論不要求證明)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.2、C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.3、D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.4、B【解析】
對復數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復數(shù)的計算,虛部的概念,屬于簡單題.5、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于中檔題.6、D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.7、D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.8、A【解析】
設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于常考題.9、C【解析】
,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數(shù)的除法運算,考查學生的基本運算能力,是一道基礎題.10、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11、B【解析】
根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.12、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.二、填空題:本題共4小題,每小題5分,共20分。13、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.14、【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經過原點O.【詳解】設點,由題意可得,,,可得,設直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.15、【解析】
如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F(xiàn),G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關系的證明,考查立體幾何中的軌跡問題,意在考查學生對這些知識的理解掌握水平.16、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.18、(1)(2)證明見解析【解析】
(1)在上有解,,設,求導根據函數(shù)的單調性得到最值,得到答案.(2)證明,只需證,記,求導得到函數(shù)的單調性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調遞增;當時,單調遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調遞增,且,當時,單調遞減;當時,單調遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學生的綜合應用能力和轉化能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調性即可求解.(Ⅱ)根據對數(shù)函數(shù)的單調性可得在上單調遞增,再利用二次函數(shù)的圖像與性質可得解不等式組即可求解.【詳解】(Ⅰ)當時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調遞減,故在上單調遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調性求值域、利用對數(shù)型函數(shù)的單調區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.21、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.22、(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國大型振動試驗機行業(yè)市場分析報告
- 2024-2030年中國即時通訊(im)行業(yè)競爭格局及投資創(chuàng)新模式分析報告
- 眉山職業(yè)技術學院《電子商務概論》2023-2024學年第一學期期末試卷
- 2024年度食品代加工與產品質量追溯協(xié)議3篇
- 2024年標準化物業(yè)租賃協(xié)議模板匯編版B版
- 2024年物聯(lián)網農業(yè)技術開發(fā)與合作合同
- 2024年標準股權轉讓協(xié)議一
- 馬鞍山師范高等??茖W?!冬F(xiàn)場節(jié)目主持實踐》2023-2024學年第一學期期末試卷
- 2024年城市綜合體土地房屋股權轉讓與建設合同范本3篇
- 2024年度特色民宿商品房承包銷售合同3篇
- YY/T 0471.4-2004接觸性創(chuàng)面敷料試驗方法 第4部分:舒適性
- YY/T 0251-1997微量青霉素試驗方法
- YC/T 559-2018煙草特征性成分生物堿的測定氣相色譜-質譜聯(lián)用法和氣相色譜-串聯(lián)質譜法
- GB/T 29309-2012電工電子產品加速應力試驗規(guī)程高加速壽命試驗導則
- 齊魯工業(yè)大學信息管理學成考復習資料
- 公務員面試-自我認知與職位匹配課件
- 中頻電治療儀操作培訓課件
- 柔弱的人課文課件
- 動物寄生蟲病學課件
- 電梯曳引系統(tǒng)設計-畢業(yè)設計
- 三度房室傳導阻滯護理查房課件
評論
0/150
提交評論