版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
優(yōu)質文檔在您身邊/雙擊可除弦切角定理的證明
第一篇:弦切角定理證明
弦切角定理證明弦切角定理
編輯本段弦切角定義
頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角。(弦切角就是切線與弦所夾的角)
如右圖所示,直線pt切圓o于點c,bc、ac為圓o的弦,∠tcb,∠tca,∠pca,∠pcb都為弦切角。
編輯本段弦切角定理
弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.弦切角定理證明:
證明一:設圓心為o,連接oc,ob,。
∵∠tcb=90-∠ocb
∵∠boc=180-2∠ocb
∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對的圓心角的度數(shù)的一半)
∵∠boc=2∠cab(圓心角等于圓周角的兩倍)
∴∠tcb(敬請期待好更好文章:)=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)
證明已知:ac是⊙o的弦,ab是⊙o的切線,a為切點,弧是弦切角∠bac所夾的弧.
求證:(弦切角定理)
證明:分三種情況:
(1)圓心o在∠bac的一邊ac上
∵ac為直徑,ab切⊙o于a,
∴弧cma=弧ca
∵為半圓,
∴∠cab=90=弦ca所對的圓周角(2)圓心o在∠bac的內部.
過a作直徑ad交⊙o于d,
若在優(yōu)弧m所對的劣弧上有一點e
那么,連接ec、ed、ea
則有:∠ced=∠cad、∠dea=∠dab
∴∠cea=∠cab
∴(弦切角定理)
(3)圓心o在∠bac的外部,
過a作直徑ad交⊙o于d
那么∠cda+∠cad=∠cab+∠cad=90
∴∠cda=∠cab
∴(弦切角定理)
編輯本段弦切角推論
推論內容
若兩弦切角所夾的弧相等,則這兩個弦切角也相等
應用舉例
例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點a,∠cba=60°,ab=a求bc長.
解:連結oa,ob.
∵在rt△abc中,∠c=90
∴∠bac=30°
∴bc=1/2a(rt△中30°角所對邊等于斜邊的一半)
例2:如圖,ad是δabc中∠bac的平分線,經過點a的⊙o與bc切于點d,與ab,ac分別相交于e,f.
求證:ef∥bc.
證明:連df.
ad是∠bac的平分線∠bad=∠dac
∠efd=∠bad
∠efd=∠dac
⊙o切bc于d∠fdc=∠dac
∠efd=∠fdc
ef∥bc
例3:如圖,δabc內接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,
求證:ac平分∠mcd,bc平分∠ncd.
證明:∵ab是⊙o直徑
∴∠acb=90
∵cd⊥ab
∴∠acd=∠b,
∵mn切⊙o于c
∴∠mca=∠b,
∴∠mca=∠acd,
即ac平分∠mcd,
同理:bc平分∠ncd.
第二篇:弦切角定理的證明
弦切角定理的證明弦切角定理:定義弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.(弦切角就是切線與弦所夾的角)弦切角定理證明
證明:設圓心為o,連接oc,ob,oa。過點a作tp的平行線交bc于d,
則∠tcb=∠cda
∵∠tcb=90-∠ocd
∵∠boc=180-2∠ocd
∴,∠boc=2∠tcb
證明:分三種情況:
(1)圓心o在∠bac的一邊ac上
∵ac為直徑,ab切⊙o于a,
∴弧cma=弧ca
∵為半圓,
(2)圓心o在∠bac的內部.
過a作直徑ad交⊙o于d,
那么
.
(3)圓心o在∠bac的外部,
過a作直徑ad交⊙o于d
那么
2
連接并延長to交圓o于點d,連接bd因為td為切線,所以td垂直tc,所以角btc+角dtb=90因為td為直徑,所以角bdt+角dtb=90所以角btc=角bdt=角a
3
編輯本段弦切角定義頂點在圓上,一邊和圓相交,另圖示一邊和圓相切的角叫做弦切角。(弦切角就是切線與弦所夾的角)如右圖所示,直線pt切圓o于點c,bc、ac為圓o的弦,∠tcb,∠tca,∠pca,∠pcb都為弦切角。編輯本段弦切角定理弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.弦切角定理證明:證明一:設圓心為o,連接oc,ob,?!摺蟭cb=90-∠ocb∵∠boc=180-2∠ocb∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對的圓心角的度數(shù)的一半)∵∠boc=2∠cab(圓心角等于圓周角的兩倍)∴∠tcb=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)證明已知:ac是⊙o的弦,ab是⊙o的切線,a為切點,弧是弦切角∠bac所夾的弧.求證:(弦切角定理)證明:分三種情況:(1)圓心o在∠bac的一邊ac上∵ac為直徑,ab切⊙o于a,∴弧cma=弧ca∵為半圓,∴∠cab=90=弦ca所對的圓周角b點應在a點左側(2)圓心o在∠bac的內部.過a作直徑ad交⊙o于d,若在優(yōu)弧m所對的劣弧上有一點e那么,連接ec、ed、ea則有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴(弦切角定理)(3)圓心o在∠bac的外部,過a作直徑ad交⊙o于d那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴(弦切角定理)編輯本段弦切角推論推論內容若兩弦切角所夾的弧相等,則這兩個弦切角也相等應用舉例例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點a,∠cba=60°,ab=a求bc長.解:連結oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a(rt△中30°角所對邊等于斜邊的一半)例2:如圖,ad是δabc中∠bac的平分線,經過點a的⊙o與bc切于點d,與ab,ac分別相交于e,f.求證:ef∥bc.證明:連df.ad是∠bac的平分線∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如圖,δabc內接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,求證:ac平分∠mcd,bc平分∠ncd.證明:∵ab是⊙o直徑∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.
第三篇:弦切角定理證明方法
弦切角定理證明方法(1)連oc、oa,則有oc⊥cd于點c。得oc‖ad,知∠oca=∠cad。
而∠oca=∠oac,得∠cad=∠oac。進而有∠oac=∠bac。
由此可知,0a與ab重合,即ab為⊙o的直徑。
(2)連接bc,且作ce⊥ab于點e。立即可得△abc為rt△,且∠acb=rt∠。
由射影定理有ac²=ae*ab。又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea≌△cda,有ad=ae,所以,ac²=ab*ad。
第一題重新證明如下:
首先證明弦切角定理,即有∠acd=∠cba。
連接oa、oc、bc,則有
∠acd+∠aco=90°
=(1/2)(∠aco+∠cao+∠aoc)
=(1/2)(2∠aco+∠aoc)
=∠aco+(1/2)∠aoc,
所以∠acd=(1/2)∠aoc,
而∠cba=(1/2)∠aoc(同弧上的圓周角等于圓心角的一半),
得∠acd=∠cba。
另外,∠acd+∠cad=90°,∠cad=∠cab,
所以有∠cab+∠cba=90°,得∠bca=90°,進而ab為⊙o的直徑。
2
證明一:設圓心為o,連接oc,ob,。
∵∠tcb=90-∠ocb
∵∠boc=180-2∠ocb
∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對的圓心角的度數(shù)的一半)
∵∠boc=2∠cab(圓心角等于圓周角的兩倍)
∴∠tcb=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)
證明已知:ac是⊙o的弦,ab是⊙o的切線,a為切點,弧是弦切角∠bac所夾的弧.
求證:(弦切角定理)
證明:分三種情況:
(1)圓心o在∠bac的一邊ac上
∵ac為直徑,ab切⊙o于a,
∴弧cma=弧ca
∵為半圓,
∴∠cab=90=弦ca所對的圓周角(2)圓心o在∠bac的內部.
過a作直徑ad交⊙o于d,
若在優(yōu)弧m所對的劣弧上有一點e
那么,連接ec、ed、ea
則有:∠ced=∠cad、∠dea=∠dab
∴∠cea=∠cab
∴(弦切角定理)
(3)圓心o在∠bac的外部,
過a作直徑ad交⊙o于d
那么∠cda+∠cad=∠cab+∠cad=90
∴∠cda=∠cab
∴(弦切角定理)
編輯本段弦切角推論
推論內容
若兩弦切角所夾的弧相等,則這兩個弦切角也相等
應用舉例
例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點a,∠cba=60°,ab=a求bc長.
解:連結oa,ob.
∵在rt△abc中,∠c=90
∴∠bac=30°
∴bc=1/2a(rt△中30°角所對邊等于斜邊的一半)
例2:如圖,ad是δabc中∠bac的平分線,經過點a的⊙o與bc切于點d,與ab,ac分別相交于e,f.
求證:ef∥bc.
證明:連df.
ad是∠bac的平分線∠bad=∠dac
∠efd=∠bad
∠efd=∠dac
⊙o切bc于d∠fdc=∠dac
∠efd=∠fdc
ef∥bc
例3:如圖,δabc內接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,
求證:ac平分∠mcd,bc平分∠ncd.
證明:∵ab是⊙o直徑
∴∠acb=90
∵cd⊥ab
∴∠acd=∠b,
∵mn切⊙o于c
∴∠mca=∠b,
∴∠mca=∠acd,
即ac平分∠mcd,
同理:bc平分∠ncd.
第四篇:弦切角的逆定理的證明
弦切角逆定理證明
已知角cae=角abc,求證ae是圓o的切線
證明:連接ao并延長交圓o于d,連接cd,
則角adc=角abc=角cae
而ad是直徑,因此角acd=90度,所以角dac=90度-角adc=90度-角cae
所以角dae=角dac+角cae=90度
故ae為切線
第五篇:弦切角、切割線、相交弦三條圓這一章已刪定理的證明
肯特教育歡迎各位朋友批評指正,王老師1820XX60373
弦切角、切割線、相交弦
三條圓這一章已刪定理的證明
一、弦切角定理
1、弦切角的定義:頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖(1)所示,ab為圓的一條弦,bc為圓的切線,∠abc即為圓的的弦切角。
圖(1)
bc
2、弦切角定理:弦切角等于它所夾的弧所對的圓周角,等于它所夾的弧所對的圓心角的度數(shù)的一半。證明如下:
a
圖(2)
如圖(2)所示,已知ab為⊙o的直徑,bd為過圓上b點的切線,求證:(1)∠cbd=∠cab,∠cbd=∠ceb(2)∠cbd=∠cob21證明:(1)∵ab為⊙o的直徑,bd為過b點的切線∴ab⊥bd
∴∠abd=90o
第1頁共1頁
肯特教育歡迎各位朋友批評指正,王老師1820XX60373∴∠abc+∠cbd=90°
∵ab為⊙o直徑
∴∠acb=90°
則∠abc+∠cab=90°
∴∠cbd=∠cab
∵∠cab和∠ceb同弧所對的圓周角∴∠cab=∠ceb
則∠cbd=∠ceb
(2)∵∠cab和∠cob是同弧所對的圓周角和圓心角∴∠cab=∠cob
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年浙江省9+1高中聯(lián)盟高三上學期11月期中物理試題(解析版)
- 跳轉頁面動態(tài)優(yōu)化-洞察分析
- 云計算在水文模型中的應用-洞察分析
- 旋臂內暗物質分布-洞察分析
- 體育俱樂部法律與政策研究-洞察分析
- 2023-2024年項目管理人員安全培訓考試題及答案(典優(yōu))
- 2023年-2024年新員工入職前安全教育培訓試題基礎題
- 2023年-2024年員工三級安全培訓考試題附完整答案(奪冠系列)
- 網絡心理咨詢在危機干預中的實踐-洞察分析
- 2023年-2024年安全管理人員安全教育培訓試題及答案(必刷)
- 社區(qū)電動車應急預案方案
- 公司股東債務分配承擔協(xié)議書正規(guī)范本(通用版)
- 平安工地、品質工程建設方案
- 2023漿體長距離管道輸送工程
- 初二英語寒假作業(yè)安排表 - 揚中樹人歡迎您
- 基于Android系統(tǒng)的天氣預報APP設計
- 市政工程危險源識別與風險評價一覽表
- 道路施工臨時占道施工應急保暢方案隧道
- 2024屆高考語文復習:作文主題訓練人文情懷
- 炊事員個人衛(wèi)生習慣養(yǎng)成-課件
- 粉末涂料有限公司邦定攪拌機安全風險分級管控清單
評論
0/150
提交評論