版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省成都市“五校聯(lián)考”高三第一次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.2.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.23.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.4.已知非零向量,滿足,,則與的夾角為()A. B. C. D.5.已知函數(shù),且關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.6.函數(shù),,則“的圖象關于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.8.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612429.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是()A.45 B.50 C.55 D.6010.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.11.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.14012.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體二、填空題:本題共4小題,每小題5分,共20分。13.設等差數(shù)列的前項和為,若,,則______,的最大值是______.14.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.15.已知函數(shù)在點處的切線經過原點,函數(shù)的最小值為,則________.16.已知函數(shù)的最小值為2,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.18.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a19.(12分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.20.(12分)某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設,且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.21.(12分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.22.(10分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數(shù)的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.2、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎題.3、B【解析】
設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.4、B【解析】
由平面向量垂直的數(shù)量積關系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎題.5、B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數(shù)圖象與方程零點之間的關系,數(shù)形結合是關鍵,屬于基礎題.6、B【解析】
根據(jù)函數(shù)奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“是奇函數(shù)”“的圖象關于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數(shù)”.因此,“的圖象關于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數(shù)奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.7、D【解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.8、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數(shù)構成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應用,屬基礎題。9、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題10、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.11、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數(shù)為,故選C12、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等差數(shù)列前項和公式,列出方程組,求出首項和公差的值,利用等差數(shù)列的通項公式可求出數(shù)列的通項公式,可求出的表達式,然后利用雙勾函數(shù)的單調性可求出的最大值.【詳解】(1)設等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項公式為;(2),,令,則且,,由雙勾函數(shù)的單調性可知,函數(shù)在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【點睛】本題考查等差數(shù)列的通項公式、前項和的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是中檔題.14、.【解析】.15、0【解析】
求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區(qū)間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數(shù)的最小值,所以.故答案為:0.【點睛】本題考查導數(shù)的應用,涉及到導數(shù)的幾何意義、極值最值,屬于中檔題..16、【解析】
首先利用絕對值的意義去掉絕對值符號,之后再結合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候對應的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應的等量關系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當或時是分界點,結合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數(shù)的性質,二次函數(shù)的性質,函數(shù)最值的求解等知識,意在考查學生的轉化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關于x的函數(shù)關系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關于x的函數(shù)關系式為,.法2:因為在中,,所以.所以,直道長度關于x的函數(shù)關系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關于x的函數(shù)關系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關系進行求解,屬于中檔題.18、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學生對于數(shù)列公式方法的綜合應用.19、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】
(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分數(shù)的平均數(shù);(2)先求出每顆芯片的測試費用的數(shù)學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數(shù)為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數(shù)學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數(shù)的計算,考查離散型隨機變量的數(shù)學期望的計算,意在考查學生對這些知識的理解掌握水平.20、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關系式為,.(ii)當觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應用,解題時要注意把條件轉化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關系的運用,同時還要注意所得結果要符合實際意義.21、(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項與前項和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《綿陽求職招聘技巧》課件
- 2020-2021學年遼寧省沈陽市郊聯(lián)體高一下學期期末考試歷史試題
- 小學一年級10以內數(shù)字的分與合
- 小學數(shù)學新人教版一年級下冊20以內口算練習題大全
- 小學三年級數(shù)學三位數(shù)加減法口算題
- 《汽車行業(yè)概述》課件
- 《運輸與包裝》課件
- 吉他行業(yè)客服工作總結用心服務打造音樂快樂
- 《光纖通信基礎知識》課件
- 酒店招聘與人才引進策略
- 2024年導游服務技能大賽《導游綜合知識測試》題庫及答案
- 高中化學實驗開展情況的調查問卷教師版
- 期末全真模擬測試卷2(試題)2024-2025學年二年級上冊數(shù)學蘇教版
- 《聲聲慢(尋尋覓覓)》課件 統(tǒng)編版高中語文必修上冊
- 初中物理-:八年級上學期競賽題
- 生物治療與再生醫(yī)療應用
- 2024年1月廣東省高中學業(yè)水平考試物理試題(附答案)
- 帕金森患者生活質量問卷(PDQ-39)
- 汽車電器DFMEA-車載終端
- 安全教育年度計劃養(yǎng)老院
- 挖掘機、裝載機崗位風險告知卡
評論
0/150
提交評論