




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新疆昌吉回族自治州昌吉州第二中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,,則的大小關(guān)系是()A. B. C. D.2.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.3.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計(jì)算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.4.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.5.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.6.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.37.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.8.已知函數(shù)滿足當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),且).若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)恰好有3對(duì),則的取值范圍是()A. B. C. D.9.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.10.已知,則的值構(gòu)成的集合是()A. B. C. D.11.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②12.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.14.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.15.設(shè)為互不相等的正實(shí)數(shù),隨機(jī)變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差________,通項(xiàng)公式________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐的底面中,,,平面,是的中點(diǎn),且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點(diǎn),使得,若存在指出點(diǎn)的位置,若不存在請(qǐng)說明理由.18.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿足,求二面角的余弦值.19.(12分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.20.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)每年3月20日是國際幸福日,某電視臺(tái)隨機(jī)調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機(jī)抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機(jī)選取3人,至少有1人是“很幸福”的概率;(Ⅱ)以這18人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸福”的人數(shù),求的分布列及.22.(10分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2、C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.3、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.4、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.5、C【解析】
對(duì)函數(shù)求導(dǎo),對(duì)a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.6、C【解析】
否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.7、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).8、C【解析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,分類利用圖像列出有3個(gè)交點(diǎn)時(shí)滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,如圖所示,當(dāng)時(shí),對(duì)稱后的圖象不可能與在的圖象有3個(gè)交點(diǎn);當(dāng)時(shí),要使函數(shù)關(guān)于原點(diǎn)對(duì)稱后的圖象與所作的圖象有3個(gè)交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個(gè)數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.9、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.10、C【解析】
對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),,則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.11、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.12、C【解析】
利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.14、【解析】
用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計(jì)算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點(diǎn)睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.15、>【解析】
根據(jù)方差計(jì)算公式,計(jì)算出的表達(dá)式,由此利用差比較法,比較出兩者的大小關(guān)系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實(shí)數(shù),故,也即,也即.故答案為:【點(diǎn)睛】本小題主要考查隨機(jī)變量期望和方差的計(jì)算,考查差比較法比較大小,考查運(yùn)算求解能力,屬于難題.16、2【解析】
直接利用等差數(shù)列公式計(jì)算得到答案.【詳解】,,解得,,故.故答案為:2;.【點(diǎn)睛】本題考查了等差數(shù)列的基本計(jì)算,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點(diǎn)為線段的中點(diǎn).【解析】
(Ⅰ)連結(jié),,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標(biāo)系,平面法向量為,平面的法向量,計(jì)算夾角得到答案.(Ⅲ)設(shè),計(jì)算,,根據(jù)垂直關(guān)系得到答案.【詳解】(Ⅰ)連結(jié),,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標(biāo)系,則,,,,設(shè)平面法向量為,則,連結(jié),可得,又所以,平面,平面的法向量,設(shè)二面角的平面角為,則.(Ⅲ)線段上存在點(diǎn)使得,設(shè),,,,所以點(diǎn)為線段的中點(diǎn).【點(diǎn)睛】本題考查了線面平行,二面角,根據(jù)垂直關(guān)系確定位置,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個(gè)平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵,,點(diǎn)為棱的中點(diǎn).∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點(diǎn)在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點(diǎn)睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計(jì)算量較大,屬于中檔題.19、(1).(2)【解析】
(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項(xiàng)公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項(xiàng)an;(2)先根據(jù)第(1)題的結(jié)果計(jì)算出數(shù)列{bn}的通項(xiàng)公式,然后運(yùn)用錯(cuò)位相減法計(jì)算前n項(xiàng)和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點(diǎn)睛】本題主要考查等差數(shù)列基本量的計(jì)算,以及運(yùn)用錯(cuò)位相減法計(jì)算前n項(xiàng)和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯(cuò)位相減法的運(yùn)用,以及邏輯思維能力和數(shù)學(xué)運(yùn)算能力.屬于中檔題.20、(1);(2)【解析】
方案一:(1)根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式列方程組,求出和,從而寫出數(shù)列的通項(xiàng)公式;(2)由第(1)題的結(jié)論,寫出數(shù)列的通項(xiàng),采用分組求和、等比求和公式以及裂項(xiàng)相消法,求出數(shù)列的前項(xiàng)和.其余兩個(gè)方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數(shù)列都是等差數(shù)列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)∵數(shù)列都是等差數(shù)列,且.,解得,,.綜上,(2)同方案一【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的應(yīng)用,考查了分組求和、等比求和及裂項(xiàng)相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廠租賃終止協(xié)議書
- 裝修砸墻協(xié)議書
- 食品進(jìn)場(chǎng)協(xié)議書
- 顴骨手術(shù)協(xié)議書
- 公司無合伙協(xié)議書
- 顧問股權(quán)協(xié)議書
- 高職單招協(xié)議書
- 購車車場(chǎng)協(xié)議書
- 視頻編碼協(xié)議書
- 兄弟結(jié)婚后協(xié)議書
- 癌癥患者生活質(zhì)量量表EORTC-QLQ-C30
- GB/T 20290-2024家用電動(dòng)洗碗機(jī)性能測(cè)試方法
- 一般工商貿(mào)(輕工)管理人員安全生產(chǎn)考試題庫(含答案)
- 醫(yī)院培訓(xùn)課件:《PPD試驗(yàn)》
- 國開電大《應(yīng)用寫作(漢語)》形考任務(wù)1-6答案
- 小學(xué)生國家文化安全教育
- MOOC 金融學(xué)-湖南大學(xué) 中國大學(xué)慕課答案
- 填寫模板-接地裝置(含連通或引下線)接頭連接記錄(表式一)GD3010247
- 城市規(guī)劃設(shè)計(jì)計(jì)費(fèi)指導(dǎo)意見(2004年)
- 常見病觀察及護(hù)理要點(diǎn)
- (高清版)TDT 1059-2020 全民所有土地資源資產(chǎn)核算技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論