第二十三章 旋轉(zhuǎn)教案_第1頁
第二十三章 旋轉(zhuǎn)教案_第2頁
第二十三章 旋轉(zhuǎn)教案_第3頁
第二十三章 旋轉(zhuǎn)教案_第4頁
第二十三章 旋轉(zhuǎn)教案_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第二十三章旋轉(zhuǎn)單元要點分析教學(xué)內(nèi)容1.主要內(nèi)容:圖形的旋轉(zhuǎn)及其有關(guān)概念:包括旋轉(zhuǎn)、旋轉(zhuǎn)中心、旋轉(zhuǎn)角.圖形旋轉(zhuǎn)的有關(guān)性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,旋轉(zhuǎn)前、后的圖形全等.通過不同形式的旋轉(zhuǎn),設(shè)計圖案.中心對稱及其有關(guān)概念:中心對稱、對稱中心、關(guān)于中心的對稱點;關(guān)于中心對稱的兩個圖形.中心對稱的性質(zhì):對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;關(guān)于中心對稱的兩個圖形是全等圖形.中心對稱圖形:概念及性質(zhì):包括中心對稱圖形、對稱中心.關(guān)于原點對稱的點的坐標:兩個點關(guān)于原點對稱時,它們的坐標符號都相反,即點P(x,y)關(guān)于原點的對稱點為P′(-x,-y).課題學(xué)習(xí).圖案設(shè)計.2.本單元在教材中的地位與作用:學(xué)生通過平移、平面直角坐標系,軸對稱、反比例函數(shù)、四邊形等知識的學(xué)習(xí),初步積累了一定的圖形變換數(shù)學(xué)活動經(jīng)驗.本章在此基礎(chǔ)上,讓學(xué)生進行觀察、分析、畫圖、簡單圖案的欣賞與設(shè)計等操作性活動形成圖形旋轉(zhuǎn)概念.它又對今后繼續(xù)學(xué)習(xí)數(shù)學(xué),尤其是幾何,包括圓等內(nèi)容的學(xué)習(xí)起著橋梁鋪墊之作用.教學(xué)目標1.知識與技能了解圖形的旋轉(zhuǎn)的有關(guān)概念并理解它的基本性質(zhì).了解中心對稱的概念并理解它的基本性質(zhì).了解中心對稱圖形的概念;掌握關(guān)于原點對稱的兩點的關(guān)系并應(yīng)用;再通過幾何操作題的練習(xí),掌握課題學(xué)習(xí)中圖案設(shè)計的方法.2.過程與方法(1)讓學(xué)生感受生活中的幾何,通過不同的情景設(shè)計歸納出圖形旋轉(zhuǎn)的有關(guān)概念,并用這些概念來解決一些問題.(2)通過復(fù)習(xí)圖形旋轉(zhuǎn)的有關(guān)概念從中歸納出“對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,旋轉(zhuǎn)前后的圖形全等”等重要性質(zhì),并運用它解決一些實際問題.(3)經(jīng)歷復(fù)習(xí)圖形的旋轉(zhuǎn)的有關(guān)概念和性質(zhì),分析不同的旋轉(zhuǎn)中心,不同的旋轉(zhuǎn)角,出現(xiàn)不同的效果并對各種情況進行分類.(4)復(fù)習(xí)對稱軸和軸對稱圖形的有關(guān)概念,通過知識遷移講授中心對稱圖形和對稱中心的有關(guān)內(nèi)容,并附加練習(xí)鞏固這個內(nèi)容.(5)通過幾何操作題,探究猜測發(fā)現(xiàn)規(guī)律,并給予證明,附加例題進一步鞏固.(6)復(fù)習(xí)中心對稱圖形和對稱中心的有關(guān)概念,然后提出問題,讓學(xué)生觀察、思考,老師歸納得出中心對稱圖形和對稱中心的有關(guān)概念,最后用一些例題、練習(xí)來鞏固這個內(nèi)容.(7)復(fù)習(xí)平面直角坐標系的有關(guān)概念,通過實例歸納出兩個點關(guān)于原點對稱時,坐標符號之間的關(guān)系,并運用它解決一些實際問題.(8)通過復(fù)習(xí)平移、軸對稱、旋轉(zhuǎn)等有關(guān)概念研究如何進行圖形設(shè)計.3.情感、態(tài)度與價值觀讓學(xué)生經(jīng)歷觀察、操作等過程,了解圖形旋轉(zhuǎn)的概念,從事圖形旋轉(zhuǎn)基本性質(zhì)的探索活動,進一步發(fā)展空間觀察,培養(yǎng)運動幾何的觀點,增強審美意識.讓學(xué)生通過獨立思考,自主探究和合作交流進一步體會旋轉(zhuǎn)的數(shù)學(xué)內(nèi)涵,獲得知識,體驗成功,享受學(xué)習(xí)樂趣.讓學(xué)生從事應(yīng)用所學(xué)的知識進行圖案設(shè)計的活動,享受成功的喜悅,激發(fā)學(xué)習(xí)熱情.教學(xué)重點1.圖形旋轉(zhuǎn)的基本性質(zhì).2.中心對稱的基本性質(zhì).3.兩個點關(guān)于原點對稱時,它們坐標間的關(guān)系.教學(xué)難點1.圖形旋轉(zhuǎn)的基本性質(zhì)的歸納與運用.2.中心對稱的基本性質(zhì)的歸納與運用.教學(xué)關(guān)鍵1.利用幾何直觀,經(jīng)歷觀察,產(chǎn)生概念;2.利用幾何操作,通過觀察、探究,用不完全歸納法歸納出圖形的旋轉(zhuǎn)和中心對稱的基本性質(zhì).單元課時劃分本單元教學(xué)時間約需10課時,具體分配如下:23.1圖形的旋轉(zhuǎn)2課時23.2中心對稱4課時教學(xué)活動、習(xí)題課、小結(jié)2課時23.1圖形的旋轉(zhuǎn)(1)第一課時教學(xué)內(nèi)容1.什么叫旋轉(zhuǎn)?旋轉(zhuǎn)中心?旋轉(zhuǎn)角?2.什么叫旋轉(zhuǎn)的對應(yīng)點?教學(xué)目標了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點的概念及其應(yīng)用它們解決一些實際問題.通過復(fù)習(xí)平移、軸對稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實際問題.重難點、關(guān)鍵1.重點:旋轉(zhuǎn)及對應(yīng)點的有關(guān)概念及其應(yīng)用.2.難點與關(guān)鍵:從活生生的數(shù)學(xué)中抽出概念.教具、學(xué)具準備小黑板、三角尺教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們完成下面各題.1.將如圖所示的四邊形ABCD平移,使點B的對應(yīng)點為點D,作出平移后的圖形.2.如圖,已知△ABC和直線L,請你畫出△ABC關(guān)于L的對稱圖形△A′B′C′.3.圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?(口述)老師點評并總結(jié):(1)平移的有關(guān)概念及性質(zhì).(2)如何畫一個圖形關(guān)于一條直線(對稱軸)的對稱圖形并口述它既有的一些性質(zhì).(3)什么叫軸對稱圖形?二、探索新知我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究.1.請同學(xué)們看講臺上的大時鐘,有什么在不停地轉(zhuǎn)動?旋繞什么點呢?從現(xiàn)在到下課時鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?(口答)老師點評:時針、分針、秒針在不停地轉(zhuǎn)動,它們都繞時針的中心.如果從現(xiàn)在到下課時針轉(zhuǎn)了_______度,分針轉(zhuǎn)了_______度,秒針轉(zhuǎn)了______度.2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動.如何轉(zhuǎn)到新的位置?(老師點評略)3.第1、2兩題有什么共同特點呢?共同特點是如果我們把時針、風(fēng)車風(fēng)輪當成一個圖形,那么這些圖形都可以繞著某一固定點轉(zhuǎn)動一定的角度.像這樣,把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.如果圖形上的點P經(jīng)過旋轉(zhuǎn)變?yōu)辄cP′,那么這兩個點叫做這個旋轉(zhuǎn)的對應(yīng)點.下面我們來運用這些概念來解決一些問題.例1.如圖,如果把鐘表的指針看做三角形OAB,它繞O點按順時針方向旋轉(zhuǎn)得到△OEF,在這個旋轉(zhuǎn)過程中:(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?(2)經(jīng)過旋轉(zhuǎn),點A、B分別移動到什么位置?例2.(學(xué)生活動)如圖,四邊形ABCD、四邊形EFGH都是邊長為1的正方形.(1)這個圖案可以看做是哪個“基本圖案”通過旋轉(zhuǎn)得到的?(2)請畫出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.(3)指出,經(jīng)過旋轉(zhuǎn),點A、B、C、D分別移到什么位置?三、鞏固練習(xí)教材P65練習(xí)1、2、3.四、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課要掌握:1.旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念.2.旋轉(zhuǎn)的對應(yīng)點及其它們的應(yīng)用.五、布置作業(yè)1.教材P66復(fù)習(xí)鞏固1、2、3.23.1圖形的旋轉(zhuǎn)(2)第二課時教學(xué)內(nèi)容1.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.3.旋轉(zhuǎn)前后的圖形全等及其它們的運用.教學(xué)目標理解對應(yīng)點到旋轉(zhuǎn)中心的距離相等;理解對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;理解旋轉(zhuǎn)前、后的圖形全等.掌握以上三個圖形的旋轉(zhuǎn)的基本性質(zhì)的運用.先復(fù)習(xí)旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角和旋轉(zhuǎn)的對應(yīng)點概念,接著用操作幾何、實驗探究圖形的旋轉(zhuǎn)的基本性質(zhì).重難點、關(guān)鍵1.重點:圖形的旋轉(zhuǎn)的基本性質(zhì)及其應(yīng)用.2.難點與關(guān)鍵:運用操作實驗幾何得出圖形的旋轉(zhuǎn)的三條基本性質(zhì).教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)老師口問,學(xué)生口答.1.什么叫旋轉(zhuǎn)?什么叫旋轉(zhuǎn)中心?什么叫旋轉(zhuǎn)角?2.什么叫旋轉(zhuǎn)的對應(yīng)點?3.請獨立完成下面的題目.如圖,O是六個正三角形的公共頂點,正六邊形ABCDEF能否看做是某條線段繞O點旋轉(zhuǎn)若干次所形成的圖形?二、探索新知上面的解題過程中,能否得出什么結(jié)論,請回答下面的問題:1.A、B、C、D、E、F到O點的距離是否相等?2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋轉(zhuǎn)前、后的圖形這里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等嗎?老師點評:(1)距離相等,(2)夾角相等,(3)前后圖形全等,那么這個是否有一般性?下面請看這個實驗.請看我手里拿著的硬紙板,我在硬紙板上挖下一個三角形的洞,再挖一個點O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個挖掉的三角形圖案(△ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動硬紙板,在黑板上再描出這個挖掉的三角形(△A′B′C′),移去硬紙板.(分組討論)根據(jù)圖回答下面問題(一組推薦一人上臺說明)1.線段OA與OA′,OB與OB′,OC與OC′有什么關(guān)系?2.∠AOA′,∠BOB′,∠COC′有什么關(guān)系?3.△ABC與△A′B′C′形狀和大小有什么關(guān)系?綜合以上的實驗操作和剛才作的(3),得出(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前、后的圖形全等.例1.如圖,△ABC繞C點旋轉(zhuǎn)后,頂點A的對應(yīng)點為點D,試確定頂點B對應(yīng)點的位置,以及旋轉(zhuǎn)后的三角形.例2.如圖,四邊形ABCD是邊長為1的正方形,且DE=,△ABF是△ADE的旋轉(zhuǎn)圖形.(1)旋轉(zhuǎn)中心是哪一點?(2)旋轉(zhuǎn)了多少度?(3)AF的長度是多少?(4)如果連結(jié)EF,那么△AEF是怎樣的三角形?分析:由△ABF是△ADE的旋轉(zhuǎn)圖形,可直接得出旋轉(zhuǎn)中心和旋轉(zhuǎn)角,要求AF的長度,根據(jù)旋轉(zhuǎn)前后的對應(yīng)線段相等,只要求AE的長度,由勾股定理很容易得到.△ABF與△ADE是完全重合的,所以它是直角三角形.三、鞏固練習(xí)教材P64練習(xí)1、2.四、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課應(yīng)掌握:1.對應(yīng)點到旋轉(zhuǎn)中心的距離相等;2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;3.旋轉(zhuǎn)前、后的圖形全等及其它們的應(yīng)用.五、布置作業(yè)1.教材P66復(fù)習(xí)鞏固4綜合運用5、6.2.作業(yè)設(shè)計.23.2中心對稱(1)第一課時教學(xué)內(nèi)容兩個圖形關(guān)于這個點對稱或中心對稱、對稱中心、關(guān)于中心的對稱點等概念及其運用它們解決一些實際問題.教學(xué)目標了解中心對稱、對稱中心、關(guān)于中心的對稱點等概念及掌握這些概念解決一些問題.復(fù)習(xí)運用旋轉(zhuǎn)知識作圖,旋轉(zhuǎn)角度變化,設(shè)計出不同的美麗圖案來引入旋轉(zhuǎn)180°的特殊旋轉(zhuǎn)──中心對稱的概念,并運用它解決一些實際問題.重難點、關(guān)鍵1.重點:利用中心對稱、對稱中心、關(guān)于中心對稱點的概念解決一些問題.2.難點與關(guān)鍵:從一般旋轉(zhuǎn)中導(dǎo)入中心對稱.教具、學(xué)具準備小黑板、三角尺教學(xué)過程一、復(fù)習(xí)引入請同學(xué)們獨立完成下題.如圖,△ABC繞點O旋轉(zhuǎn),使點A旋轉(zhuǎn)到點D處,畫出旋轉(zhuǎn)后的三角形,并寫出簡要作法.作法:(1)連結(jié)OA、OB、OC、OD;(2)分別以O(shè)B、OB為邊作∠BOM=∠CON=∠AOD;(3)分別截取OE=OB,OF=OC;(4)依次連結(jié)DE、EF、FD;即:△DEF就是所求作的三角形,如圖所示.二、探索新知問題:作出如圖的兩個圖形繞點O旋轉(zhuǎn)180°的圖案,并回答下列的問題:1.以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后兩個圖形是否重合?2.各對稱點繞O旋轉(zhuǎn)180°后,這三點是否在一條直線上?像這樣,把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點.例1.如圖,四邊形ABCD繞D點旋轉(zhuǎn)180°,請作出旋轉(zhuǎn)后的圖案,寫出作法并回答.(1)這兩個圖形是中心對稱圖形嗎?如果是對稱中心是哪一點?如果不是,請說明理由.(2)如果是中心對稱,那么A、B、C、D關(guān)于中心的對稱點是哪些點.分析:(1)根據(jù)中心對稱的定義便直接可知這兩個圖形是中心對稱圖形,對稱中心就是旋轉(zhuǎn)中心.(3)旋轉(zhuǎn)后的對應(yīng)點,便是中心的對稱點.答:(1)根據(jù)中心對稱的定義便知這兩個圖形是中心對稱圖形,對稱中心是D點.(2)A、B、C、D關(guān)于中心D的對稱點是A′、B′、C′、D′,這里的D′與D重合.例2.如圖,已知AD是△ABC的中線,畫出以點D為對稱中心,與△ABD成中心對稱的三角形.分析:因為D是對稱中心且AD是△ABC的中線,所以C、B為一對的對應(yīng)點,因此,只要再畫出A關(guān)于D的對應(yīng)點即可.三、鞏固練習(xí)教材P74練習(xí)2.四、歸納小結(jié)(學(xué)生歸納,老師點評)本節(jié)課應(yīng)掌握:1.中心對稱及對稱中心的概念;2.關(guān)于中心的對稱點的概念及其運用.五、布置作業(yè)1.教材P73練習(xí)1.2.選作課時作業(yè)設(shè)計.23.2中心對稱(2)第二課時教學(xué)內(nèi)容1.關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.2.關(guān)于中心對稱的兩個圖形是全等圖形.教學(xué)目標理解關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;理解關(guān)于中心對稱的兩個圖形是全等圖形;掌握這兩個性質(zhì)的運用.復(fù)習(xí)中心對稱的基本概念(中心對稱、對稱中心,關(guān)于中心的對稱點),提出問題,讓學(xué)生分組討論解決問題,老師引導(dǎo)總結(jié)中心對稱的基本性質(zhì).重難點、關(guān)鍵1.重點:中心對稱的兩條基本性質(zhì)及其運用.2.難點與關(guān)鍵:讓學(xué)生合作討論,得出中心對稱的兩條基本性質(zhì).教學(xué)過程一、復(fù)習(xí)引入(老師口問,學(xué)生口答)1.什么叫中心對稱?什么叫對稱中心?2.什么叫關(guān)于中心的對稱點?3.請同學(xué)隨便畫一三角形,以三角形一頂點為對稱中心,畫出這個三角形關(guān)于這個對稱中心的對稱圖形,并分組討論能得到什么結(jié)論.(每組推薦一人上臺陳述,老師點評)(老師)在黑板上畫一個三角形ABC,分兩種情況作兩個圖形(1)作△ABC一頂點為對稱中心的對稱圖形;(2)作關(guān)于一定點O為對稱中心的對稱圖形.第一步,畫出△ABC.第二步,以△ABC的C點(或O點)為中心,旋轉(zhuǎn)180°畫出△A′B′和△A′B′C′,如圖1和用2所示.(1)(2)因此,我們就得到1.關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.2.關(guān)于中心對稱的兩個圖形是全等圖形.例1.如圖,已知△ABC和點O,畫出△DEF,使△DEF和△ABC關(guān)于點O成中心對稱.分析:中心對稱就是旋轉(zhuǎn)180°,關(guān)于點O成中心對稱就是繞O旋轉(zhuǎn)180°,因此,我們連AO、BO、CO并延長,取與它們相等的線段即可得到.例2.(學(xué)生練習(xí),老師點評)如圖,已知四邊形ABCD和點O,畫四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于點O成中心對稱(只保留作圖痕跡,不要求寫出作法).二、鞏固練習(xí)教材P70練習(xí).三、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課應(yīng)掌握:中心對稱的兩條基本性質(zhì):1.關(guān)于中心對稱的兩個圖形,對應(yīng)點所連線都經(jīng)過對稱中心,而且被對稱中心所平分;2.關(guān)于中心對稱的兩個圖形是全等圖形及其它們的應(yīng)用.四、布置作業(yè)1.教材P74復(fù)習(xí)鞏固1綜合運用6、7.2.選作課時作業(yè)設(shè)計.23.2中心對稱(3)第三課時教學(xué)內(nèi)容1.中心對稱圖形的概念.2.對稱中心的概念及其它們的運用.教學(xué)目標了解中心對稱圖形的概念及中心對稱圖形的對稱中心的概念,掌握這兩個概念的應(yīng)用.復(fù)習(xí)兩個圖形關(guān)于中心對稱的有關(guān)概念,利用這個所學(xué)知識探索一個圖形是中心對稱圖形的有關(guān)概念及其它的運用.重難點、關(guān)鍵1.重點:中心對稱圖形的有關(guān)概念及其它們的運用.2.難點與關(guān)鍵:區(qū)別關(guān)于中心對稱的兩個圖形和中心對稱圖形.教具、學(xué)具準備小黑板、三角形教學(xué)過程一、復(fù)習(xí)引入1.(老師口問)口答:關(guān)于中心對稱的兩個圖形具有什么性質(zhì)?(老師口述):關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論