2021年阿里巴巴全球數(shù)學競賽預(yù)選賽試題及參考答案_第1頁
2021年阿里巴巴全球數(shù)學競賽預(yù)選賽試題及參考答案_第2頁
2021年阿里巴巴全球數(shù)學競賽預(yù)選賽試題及參考答案_第3頁
2021年阿里巴巴全球數(shù)學競賽預(yù)選賽試題及參考答案_第4頁
2021年阿里巴巴全球數(shù)學競賽預(yù)選賽試題及參考答案_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1,2.在一個虛擬的世界中,每個居民(設(shè)想為沒有大小的幾何點依次編號為12···.了抗擊某種疫情,4

的圓周。為了安全,要求第m號居民和第n民之間的距離dm,n

(m+n)dm,n≥,選擇題(4分)下列選項()A這個留觀室最多能容納8個居民B這個留觀室能容納的居民個數(shù)有大千8的上限C)R1答案.選項C符合實際情況R2答案.解法一.我們可以按下述方式安排第12號居民的位置.首先,任意安排第1號居民的位置。對n≥2,若第12n1號居民的位置已經(jīng)被安排好,我們考慮第n號居民不能在哪些位置。對千1≤m≤n1,由dm,n≥1,我們知道,從第m號居民的位置開始,逆時針方向各走,

的距離所形成的長度為

的圓弧內(nèi)部是不可以安排第n民的. +2 +···+ <2(lnn+1+lnn+2+···+ln2n?1)=2ln2n?1<2ln2.n+

n+

2n?

n+

2n? 422因此,這些圓弧的并集的總長度不超過2ln2,而整個圓周長為1·2π=π.熟知π4221.5>2ln2,故這些圓弧不能覆蓋整個圓周,因此第n號居民總可以選擇一個合適的位置使得他與第12n1號居民之間的距離均滿足題目條件.由數(shù)學歸納法可知,解法二 我們以圓周的圓心為原點建立平面直角坐標系,并將第1,2,3,4號居民分444422放在10)(10)(0,1)(01)處,即他們的輻角主值分別為0π,π,3π.444422448居民的距離不小千2·1·π=π>1故此時的4名居民滿足題目條件448我們使用數(shù)學歸納法證明下面命題:對整數(shù)k>2,可以將第122k號居民安置千圓周上一個內(nèi)接正2k邊形的各個頂點處,使得匕們互相之間(在圓周上的)距離滿足題目條件,且編號為122k?1號的居民在圓周上兩兩不相鄰.上述命題對k2成立.若其對k成立,即前2k號居民的位置都已確定.考慮他們將圓周分成的2k段弧.我們要將第2k12k22k+1號居民放置在這些弧的中點.現(xiàn)在來證明可以適當放置使得涉及第2k+12k+22k+1號居民的距離均滿足題目我們將第2k12k2號居民放置在與第2k?1號居民相鄰的位置(即與第2k?1民的輻角差為

距離的位置);將第2k32k4號居民放置在與第2k?11相鄰的位置;···將第2k2a12k2a號居民放置在與第2k?1a1位置;···將第2k+112k+1號居民放置在與第1號居民相鄰的位置由千前2k?1號居民在圓周上兩兩不相鄰,這樣的放置是可行的. π 居民的距離(只需考慮至少一位居民是“新”的情形).因為圓周被分成了2 π 長為

,對千兩位編號分別為m>2和n的居民, 弧,

2(m+ dm,n≥2k+1

2·m+n

>m+n若他們之間的距離恰為一段弧長,設(shè)n∈{2k2a12k2a},則m>2k?1a1,此

3π· (m+n)dm,n≥2k+2

+2a?1+2

?a+1)=2k+2

+a)

>8所以,第122k+1號居民兩兩之間的距離均滿足題目條件.由數(shù)學歸納法知,3,4.2019年第一屆阿里巴巴數(shù)學競賽的優(yōu)勝者們在參加集訓(xùn)營的時候集體送給主辦方負責人的禮物,是一個有60個全等的三角形面的多面體。從圖中我們可以看到,這個多面體的表面是60個全等的空間四邊形拼接而成的。一個空間n邊形是指由一個平面n邊形沿若干條對角線做適當翻折(即在選定的對角線處形成適當?shù)亩娼?后得到的空間圖形。兩個空間圖形全等指的是匕們可以通過R3中的一個等距變換完全重合。一個多面體指的是一個空間有界區(qū)域,其邊界可以判斷題(4分)我們知道2021=4347.那么是否存在一個多面體,由43個全等的空間47邊形拼接而成)R3答案.可以R4答案.我們只需要舉一個例子即可.考慮一個標準的環(huán)面T,T={θ,?:0≤θ,?<我們可以認為這個環(huán)面以z-軸為對稱軸:(θ?)對應(yīng)千空間中的((Rrcos?cosθ(R+rcos?sinθrsin?).對千1≤k≤43,kD={θ,?:2(k?1)π+3k

≤θ π+ 直觀地說,把環(huán)面分成全等的43份之后,每一份沿{?=0}切開,不動另一側(cè)扭轉(zhuǎn)一定角度現(xiàn)在,把{?0這個圓變形成一個正43邊形,各個頂點分別對應(yīng)千θ=2kπ.這樣Dk有四條“邊”(其中兩條位千{?0上四個頂點(兩個位千正43邊形的頂點處,兩個位千邊的中點處,我們還要標記出這兩個中點之間的正43邊形的頂點).記為

=(2(k?1)π,0),2k+

=( 2k+Dk,0=

π,2π),Dk,1=

π,Ek=

2k+π,在?Dk的另一條邊上取21個點, =(2(k?1)π+3?π,

π),i=1,...,

然后繞z-軸旋轉(zhuǎn)2π后得到另21個點,記為Bk,ii=1連結(jié)線段Ck,0Ck,1Ck,0Ak,1Ck,1Bk,1Ak,iAk,i+1Bk,iBk,i+1Ak,iBk,iAk,iBk,i+1(i=121),以及Ak,21Dk,0Bk,21Dk,1Ak,21EkBk,21EkDk,0Ek和EkDk,1.我們得到一個空間47邊形.這樣我們就得到了43個全等的(上述構(gòu)造與k無關(guān)空間47邊形匕們說明:一個典型的錯誤是誤認為這些空間多邊形的頂點(邊)都是多面體的頂點(邊),而根據(jù)“每條邊都算兩次”和“2021是奇數(shù)”得到“矛盾”,由此認為本題的解答是否定的去年,張師傅因為多旋圈面爆紅,今年他來到了達摩院給掃地僧做面。某天,軟件工程師小李跟張師傅吐槽工作。小李主要研究和設(shè)計算法用千調(diào)節(jié)各種產(chǎn)品的參數(shù)。這樣的參數(shù)一般可以通過極小化Rn上的某個損失函數(shù)f求得。在小李最近的一個項目中,這個損失函數(shù)是另外一個課題組提供的;出千安全考慮和技術(shù)原因,該課題組數(shù)值f(x)。所以,小李必須僅基千函數(shù)值來極小化f。而且,每次計算f的值都消耗不小的計算資源。好在該問題的維度n不是很高(10左右)。另外,提供函數(shù)的同事還告知小李不妨先假設(shè)f是光滑的。這個問題讓張師傅想起了自己收藏的一臺古董收音機。要在這臺收音機上收聽一個節(jié)目,你需要小心地來回擰一個調(diào)頻旋鈕,同時注意收音效果,直到達到最佳。在這過程中,沒有人確切地知道旋鈕的角度和收音效果之間的定量關(guān)系是什么。張師傅和小李意識到,極小化f不過就是調(diào)節(jié)一臺有多個旋鈕的機器:想象x的每一個分量由一個旋鈕控制,而f(x)表示這臺機器的某種性能,只要我們來回調(diào)整每個旋鈕,同時監(jiān)視f的值,應(yīng)該就有希望找到最佳的x。受此啟發(fā),兩人一起提出了極小化f的一個迭代算法,并命名為“自動前后調(diào)整算法”(Automatedorard/BakardTuning,AFBT,算法1)。在第k次迭代中,AFBT通過前后調(diào)整xk的單個分量得到2n個點{xk±tkei:i=1n},其中tk為步長;然后,令yk為這些點中函數(shù)值最小的一個,并檢查yk是否使f充分減??;若是,取xk+1=ykk則,令xk+1xk并將步長減半。在算法1中,ei表示Rn中的第i個坐標向量,匕的第i個分量為1,其余皆為0;山(·為指示函數(shù)若f(xkf(yk至少為tk之平方,則山[f(xkf(ykt2]取值為1,否則為0。k1自動前后調(diào)整算法輸入x0Rn,t0>0。對k012,1:ykargmin{f(yyxktkei,i1 k2:sk:=山[f(xk)?f(yk)≥ #是否充分下降?是:sk=1;否:sk=0k?3:xk+1 sk)xk ?4:tk+1:=22sk 更新步長。sk=1步長增倍;sk=0現(xiàn)在,我們對損失函數(shù)f:Rn→R假設(shè)1.f為凸函數(shù),即對任何xyRn與α[01]f((1?α)x+αy)≤(1?α)f(x)+αf假設(shè)2.f在Rn上可微且?f在Rn上L-Lipschitz假設(shè)3.f的水平集有界,即對任意λR,集合{xRnf(xλ基千假設(shè)1與假設(shè)2 ?f(x),yx〉≤f(yf(x)≤?f(x),yx+2lx對任何xy∈Rn成立;假設(shè)1與假設(shè)3則保證f在Rn上取到有限的最小值f?證明題(20分)在假設(shè)1–3下,對千AFBTlimf(xk)=fR5證明.假設(shè)f(xk)-Af?。因{f(xk)}不增,故fk0k)??]>0。記gk=?f(xk),則infk≥0k0取x使f(x?f?則f之凸性保證gkxkx?f(xkf?;同時,{f(xk)}之單調(diào)性與f之水平集有界性保證{xk?x?}有界。故infk≥0k>0)。換言之,存在ε0使kε對所有k0成立。任給k0,可取ik{1其中κ=1/√n

|gk,eik〉|≥k≥ k±kik} k?k| ik〉 f(y minf te f(x g, 2

t2k≤f(xk)?κεtk+2.k

tk

L+k我們就有f(yk)≤f(xk)?t2,從而sk=1,進而有tk+1=2tkkk0L+ ≥t≡min夕t,κε1>k0L+對所有k≥0成立。故存在無窮個k使得sk=1(否則tk→0);對每一個這樣的k,fk)?(xk+1≥t2。這與f { } 令n為正整數(shù)。對任一正整數(shù)k,記0=diag0,..., { } ( Y ( 為一個(2n1)(2n1)矩陣,其中A=(xi,j)1≤i≤n,1≤j≤n+1是一個n(n1)且At記A的轉(zhuǎn)置矩陣,即(n+1)n的矩陣,(ji)處元素為證明題(10分)稱復(fù)數(shù)λ為kk矩陣X的一個特征值,v=(x1,...,使得Xvλv.證明:0是Y的特征值且Y的其他特征值形如±√λ,實數(shù)λ是AAt證明題(15分)令n=3且a1a2a3a4是4a jaijaii =ai

+a

ji4j (a+aji4j(1≤i≤3,1≤j≤4),其中

1ifi=ff

證明:Y有7 { } R6證明:(i)記I=diag1,...,1 { } ,,det(λI2n+1?Y)=λdet(λ2In?所以,0是Y的特征值且Y的其他特征值形如±√λ,其中λ是AAt的非負實數(shù)特征a2+a2a2+a2(ii)記u=(a4,a4,a4),v=( 4, 4, 4).計算 13AAt=diag{a2,...,a2}+utu?13設(shè)f(sdet(sInAAt為AAt的特征多項式.a2af(a2)

r(a2?

1234i(?i∈{1234}).令alalalal為a1a2a3a4經(jīng)重排后得到的遞減序列.由f(x2)1234i表達式得:AAt有三個互不相等的特征值b2b2b3,其中b1b2b3 a21l>b1>a21

>b2>

>b3>34的正實數(shù).因此,由(i)得Y有7個互不相等的特征值34對千R上的連續(xù)且絕對可積的復(fù)數(shù)值函數(shù)f(x),定義R上的函數(shù)(Sf(Sf)(x(Sf)(x)e2πiuxf問答題(10分)求S(1)和S( )的顯式表達式 問答題(15分)對任意整數(shù) 記fk(x)=(1+ 假設(shè)k≥ 找到數(shù)c1c2使得函數(shù)y=(Sfk)(x)xyll+c1yl+c2xy=R7答案且

1S(1+

)=S( )=π(1+2π|x|)e?2π|x|.(1+ (ii)c1?2k且c2解答記V為R上的復(fù)數(shù)值、連續(xù)、絕對可積的函數(shù)組成的線性空間Lemma (i)若f(x)∈V,fl(x)∈V且limxf(x)=0,(Sfl)(x)=πS (ii)若f(xV且xf(xV,(Sf)l=2πiS(xf .(Sf e2πiuxf=e2πiuxf(u)|+∞e2πie2πiuxf==

(e2πiux)lf=πS(ii)對任意的abR(aa2πiS(xfa +∞= =e2πiuxufaa e2πie2πibuf(u)du==

2πiue2πiuxfaaee2πiauf=(Sf)(b)?(Sf這樣,(Sf)l2πiS(xfCorollary (i)假設(shè)fflSfx(Sf)(xVlimf(x)=若(S(Sf))(x)=f(?x),則(S(Sfl))(x)=f(ii)假設(shè)f(x)xf(x)Sf(Sf)lVlim(Sf)(x)=若(S(Sf))(x)=f(?x),則S(S(xf(x)))=?xfLemma (i)S((1+x2)?1)=(ii)S(πe?2π|x|)=(1+Proof.(i)記f(x(1x2)?1.對千x0,(Sf)(x)

A

?A1+記CA:={z=u+iv:?A≤u≤A,v=0}u{z=Aeiθ:0≤θ≤注意到當A>1時,i是1在CA界定的有界區(qū)域內(nèi)的唯一極點并令A(yù),我們得到(Sf)(xπe?2πx.由千f(x)是偶函數(shù),所以(Sf)(x)函數(shù).這樣,(Sf)(x)=(ii)記g(x)=πe?2π|x|.∞ ==(e2πixu+001

e?2π(1?ix)u=?21

1+

1? 1+x2Lemma (i)對千任意的k≥0,Sfk形如(Sfk)x= 其中g(shù)k個k次多項式(ii)對千任意的k≥0,S(S(fk))=fk且S(S(xfk+1(x)))=?xfk+1(x).Proof.(i)我們有遞歸公式

=

+2(k+

xflk由引理0.1,得遞歸公式k

=

?2(k+

由此由歸納法我們導(dǎo)出結(jié)論k(ii)注意到fl(x?2(k1)xfk+1(x)且(xfk(x))l=?(12k)fk(x2(k1)fk+1(x).由(i)部分的結(jié)論結(jié)合引理0.1,我們知道推論0.2中的假設(shè)對函數(shù)fk(x)和xfk+1(x)(k≥0)成立.這樣,由歸納法可證S(S(fk))=fk(x)且S(S(xfk+1(x)))=?xfk+1(x)(kk回到題目本身.(i)在引理0.3中已經(jīng)證明S((1x2)?1)=πe?2π|x|.由(5)S(?2x(1+x2)?2)=

S(?2x2(1+x2)?2)=?π(1?2S((1+x2)?2)=π(1+2(ii)首先,當k≥1時 xjfk(x)(0≤j≤ 都是絕對可積的 這樣,由ySfk)(x)是2k次連續(xù)可微函數(shù).由引理0.1和引理0.4得:xyllc1ylc2xy0kk(x2fl+kk

c2kk f=kk1輸入fk(x(1x2)?1?k,我們得到c1?2k且c21當某公司推出一個新的社交軟件時,公司的市場部門除了會關(guān)心該軟件的活躍客戶的總?cè)藬?shù)隨時間的變化,也會對客戶群體的一些特征做具體的調(diào)研和分析。我們用n(t,)表示客戶的數(shù)量密度(以下簡稱密度),這里t表示時間,而x表示客戶對該社交軟件的使用時長,那么在t時刻,對千0<x1<x2,使用時長介千x1和x2之間的客戶數(shù)量為Jx2n(t,x)dx。我們假設(shè),密度n(t,x)假設(shè)1.假設(shè)2.客戶在使用過程中,可能會停止使用,我們假設(shè)停止速率d(x)>0時長x假設(shè)3.公司的宣傳:單位時間內(nèi)因此增加的人數(shù)是時間的函數(shù),用c(t)推薦成功的速率跟客戶的使用時長x有關(guān),記作b(x)假設(shè)如果在某一時刻,記為t=0時,密度函數(shù)是已知的,n(0x)=n0(x)導(dǎo)出,n(t,x)0f?n(t,x)+?n(t,x)+d(x)n(t,x)= t≥00f?n(t,x)+?n(t,x)+d(x)n(t,x)= t≥0,x≥+這里N(t)可解讀為新客戶的增加速率。我們假設(shè)b,d∈L∞(0∞),即b(x)和d(x)正且(本質(zhì))有界。以下,我們先做一個簡化假設(shè):c(t)≡0,即新客戶的增加只跟老客戶+問答題(10分根據(jù)假設(shè)1和假設(shè)2,形式地推導(dǎo)出(7)中n(t,x所滿足的?微分設(shè)3,解釋(7)中N(t)的定義的含義。問答題(10分)我們想要研究新客戶的增加速率N(t)和推薦成功速率b(x)之間的關(guān)系。為此,請推導(dǎo)出一個N(t)所滿足的方程,且方程中只包含N(t),n0(x),b(x),d(x),而不包含n(t,x)。并證明,N(t)滿足如下估計|N(t)|≤∞這里l·l∞表示L∞

|n0(x)| 證明題(10分)最后,我們想要研究,在充分長的時間之后,數(shù)量密度函數(shù)n(t,x)數(shù)量密度函數(shù)n(t,x),而更應(yīng)該去看一個重整化的的密度函數(shù)。 為此,我們首先假設(shè)如下的特征值問題有唯一解(λ0 ?l(x)+(λ+d(x))?(x)= 0?(x)> ?(0)=J∞b(x)?(x)dx=0f f 0ψl(x)+(λ+d(x))ψ(x)=ψ(0)b(x), ψ(x)≥0, J∞ψ(x)?(x)dx=1.0然后,我們定義重整化密度?(t,x)n(t,x)e?λ0t。證明,對千任意凸函數(shù)H RR+滿足H(0)0 dt

?(t,

dx≤ ?t≥

∞ψ(x)n(t,x)dx=0

∞0∞R8答案:(i)1,特征線法。由千使用時長隨時間線性增長,我們定義特征線x(t)

=

dtn(t,x(t))=?d(x(t))n(t,2,微元法??紤]一個時間微元δt?1n(t+δt,x+δt)=n(t,x)?δtd(x)n(x,t)+其中右端第一項表示時間平移的貢獻,第二項表示停止的客戶數(shù)量。兩邊除以δt令δt0Jb(y)n(t,關(guān)千N(t)的定義,只需要說明老客戶推薦的貢獻。對千固定某個使用時長x的老客戶,他們單位時間內(nèi)介紹的新客戶的數(shù)量為Jb(y)n(t,為 0根據(jù)題意和N(t)的定義,我們需要先把密度函數(shù)n(t,x)寫成N(t)dn(t+s,x+s)+d(x+s)n(t+s,x+s)=0則如果定義D(x)=Jxd(y)dy0 eD(x+s)n(t+s,x+s)= 那么,當smax(?t,?x)eD(x+s)n(t+s,x+s)=eD(x)n(t, ?x≥0,t≥ 特別的,我們可以令x=y,s=?y可得,當t≥yn(t,y)=N(t?再令xy,s?t可得,當tyn(t,y)=n0(y?為了導(dǎo)出N(t)N(t)

b(y)n(t,y)dy0

b(y)n(t,y)dy0

b(y)n(t,t根據(jù)特征線可知,右端第一項的特征線起源千x=0,t≥0千x≥0t=0。將n(t,y)N(t)

?b(y)e?D(y)N y)dy?0

? ?t整理,即得到N(t)N(t)0b(N(t)0b(t?x)e?D(t?x)N(x)dxb(x+ 0考慮到d(x)>0所以D是遞增函數(shù),上式中的e?D(t?x),eD(x)?D(x+t)均不大千1千是,再利用b(x)的有界性,我們可以對N(t)|N(t)|≤

0|N(x)|dx+0

0|n0(x)|0 ?(t,?(t,?t

?(t,+?x

=

?H?(t,x)\+

H?(t,x)\=ψ(x)≥ J∞ψ(x)?(x)dx=f?[?(xψ(x)≥ J∞ψ(x)?(x)dx=00?『ψ(x)?(x)H?(t,x)\l

『ψ(x)?(x)H?(t,x)\l?ψ(0)b(x)?(x)H?(t,x) 記dμ(x)=b(x)?(x)dx,將上式對x dt

?(t,

?dx ?0

?(t,

dμ(x)+

?(t, 0我們注意到,由定義知?(0)=1,且n(t,0)=J∞b(x)n(t,x)dx0?(t,

?(t,

∞b(x)?(t,

?(t,

dt

?(t,

∞ 『?dx= 『?0

?(t,

dμ(x)+

?(t, 再由Jensen dt

?(t,

dx≤最后,令H(u)=uAlibabaGlobalMathematicsCompetition-1,2,···.Inordertofightagainstsomeepidemic,theresidentstakesomevaccineandtheystayatthevaccinationsiteaftertakingtheshotforobservation.Nowsuppose4theshapeoftheObservationRoomisacircleofradius1,andonerequiresthatthedistancedm,nbetweentheResidentNo.mandtheResidentNo.nmustsatisfy4(m+n)dm,n≥Whereweconsiderthedistanceonthecircle,i.e.,thelengthoftheminorarcbetweentwopoints.ANomorethan8residentscanbeplacedinsidetheobservationthan8,butstillfinite;R1Answer.TheChoiceCisR2Answer.SolutionI.WecanplacetheResidentsNo.1,2,...accordingtothefol-lowingrule.First,putResidentNo.1arbitrarily.Forn>2,ifResidentsNo.1,2,...,havealreadybeenplaced,weconsiderthepositionswhereResidentNo.ncannotbeFor1≤m≤n?1,bydm,n≥1,weknowthattheResidentNo.ncannotplacedinthearcthatiscenteredatResidentNo.m,andofthelength2.Thelengthofthesearcs2+2+···+ <2(lnn+1+lnn+2+···+ln2n?1)=2ln2n?1<2ln2.n+

n+

2n?

n+

2n? Therefore,thetotallengthoftheunionofthesearcsdoesnotexceed2ln2,while422perimeterofthecircleis1·2π=π.Itiseasytoobservethatπ>1.5>2ln2,422thesearcswouldnotcoverthewholecircle,henceitisalwayspossibletofindaplaceforResidentNo.nsuchthatitsdistancestoResidentsNo.1,2,...,n?1satisfytherequirement.Byinductionweconcludethatthecirclecanaccomodateanyquantity4444SolutionII.WeconsidertheCartesioncoordinatesystemwhoseoriginisthecen-terofthecircle,andplaceResidentsNo.1,2,3and4at(1,0),(?1,0),(0,1),(0,?14444respectively,orinanequivalentway,wesaythat(theprinciplevaluesof)their22mentsare0,π,πand3π.Nowthedistancebetweenanytworesidentsisnoless224482·1·π=π>1,sotheplacementofthese4residentssatisfiesthe448Weprovethefollowingassertionbyinduction:foranyintegerk>2,wecanResidentsNo.1,2,...,2kattheverticesofaregular2k-goninscribedtothecircle,suchthattheirmutualdistancesfulfilltherequirement,andnotworesidentsamongthefirst2k?1occupyadjacentvertices.Theassertionholdsfork=2.Ifitisvalidfork,sothatthefirst2kresidentsareplaced.Theydividethecircleinto2kequalarcs.WeneedtoputResidentsNo.2k+1,2k+2,...,2k+1atthemidpointsofthesearcs.SowejustneedtoprovethedistancesrelatedtoResidentsNo.2k+1,2k+2,...,2k+1satisfytherequirement.WeputResidentsNo.2k+1,2k+2inpositionsnexttoResidentNo.2k?1(i.e.correspondingargumentsdiffertothatofResidentNo.2k?1by

2k+3,2k+4nexttoResidentNo.2k?1?1;···putResidentsNo.2k+2a?1,2k+2anexttoResidentNo.2k?1?a+1;···putResidentsNo.2k+1?1,2k+1nexttoAsthefirst2k?1residentsdonotoccupyanyconsecutivepositions,theaboveplace-mentwouldnotcauseanyproblem.Nowweconsiderdistancebetweentworesidents(onlythecaseswhereatleastoneresidentinthepairis“new”needtobe14Sincethecircleisnowdividedinto2k+1arcs,eachhaslength2π =π14ResidentsNo.m(>2k)andn,iftheyareseparatedbyatleasttwopiecesofarcs, 2(m+ dm,n≥2k+1>2·m+n

>m+nIftheyarejustseparatedbyonepieceofarc,thenforn∈{2k+2a?1,2k+2a},wehavem>2k?1?a+1,hence

3π· (m+n)dm,n≥2k+2

?a+1)=2k+2

+a)

>8Therefore,thedistancesbetweeneachpairofResidentsNo.1,2,...,2k+1satisfiestherequirement.Thenbyinduction,weconcludethatanynumberofresidentscanbeaccomodatedinthatway.3,4.Twoyearsago,thewinnersof2018AlibabaGlobalMathematicsCompetitionmadeapaperpolyhedronasapresenttotheorganizers.Asshowninthephotoes,thepolyhedronhas60equaltriangularfaces,anditssurfacecanalsobedividedinto60congruentnon-planarquadrilaterals.Anon-planarn-gonisanon-planarfigureobtainedfromaplanarn-gonbyfoldingitTwonon-planarfiguresarecongruentifandonlyifeachcanbeobtainedfromtheotheristheunionofafinitecollectionofplanarpolygonsalongcommonedges.True-FalseQuestion(4points)Weknowthat2021=43×47.IsthereQuestionandAnswer(6points)PleasejustifyyouranswertoQuestion(i)witharigorousargument.R4Answer.Allweneedtodoistoconstructanexample.Let’sconsiderastandardtorusT,whosepointscanberepresentedbytwoparameters:T={θ,?:0≤θ,?<Onecanviewthez-axisastheaxisofsymmetryofthe((R+rcos?)cosθ,(R+rcos?)sinθ,rsinFor1≤k≤43,weconsiderthefollowingregiononthekD={θ,?:2(k?1)π+3k

≤θ π+ Intuitively,whatwedohereistodividethetorusinto43equalparts,thencuteverypartalongthecircle{?=,keeponesideofthecutwhileslidingtheothersidealongthecircleforcertainangle.Now,wedeformthecircle{?=0}intoaregular43-gonwhoseverticescorrespondtoθ=2kπ.ThenDkhasfour“sides”of(twoofwhichlieon{?=0),four(twoofwhichareadjacentverticesofthe43-gon,whiletheothertwoaremidpointsoftwosides,weneedthenmarkthevertexofthe43-gonbetweenthesetwomidpoints).Wedenote

=(2(k?1)π,0),2k+

=( 2k+Dk,0=

π,2π),Dk,1=

π,Ek=

2k+π,Takeanother“side”of?Dk,mark21points, =(2(k?1)π+3?π,iπ),i=1,...,

Thenrotatearoundz-axisby2πtogetanother21points,denotethembyBk,i,i=1,...,Ck,0Ck,1,Ck,0Ak,1,Ck,1Bk,1,Ak,iAk,i+1,Bk,iBk,i+1,Ak,iBk,i,Ak,iBk,i+1(i=1,...,andAk,21Dk,0,Bk,21Dk,1,Ak,21Ek,Bk,21Ek,Dk,0Ek,EkDk,1.Wegetanon-planar47-gon.Thusweget43congruent(theconstructionaboveisindependentofk)non-planar47-gons,theycanbegluetogethertoformapolyhedron.Remark:Atypicalmistakewouldbetothinkthatthevertices(edges)ofthesenon-planarpolygonsareallvertices(edges,notpartofeadges)ofthepolyhedron,thend-eductsfrom“eachedgeiscountedtwice”and“2021isanoddnumber”afake“condtra-Lastyear,MasterZhanggotfamouswithhistopologynoodle,andheisnowapart-timechefatAlibabaDamoAcademy.Oneday,XiaoLi,asoftwareengineerattheDAMOAcademy,complainedabouthisrecentworkwithMasterZhang.XiaoLi’susuallybeformulatedasfindingavectorx∈RnthatminimizesacertainlossonRn.Inhislatestproject,XiaoLihastodealwithalossfunctionfthatisbyanothergroup.Forsecurityandtechnicalreasons,theothergroupcannotrevealtheexplicitdefinitionf,butonlyoffersaninterfacetoevaluatefatanygivenx∈Rn.tionoffiscostly.Fortunately,thedimensionnofthisproblemisnothigh(around10).Besides,thegroupthatprovidesthefunctioninformsXiaoLithathemayassumefisXiaoLi’sproblemremindsMasterZhangaboutanantiqueradiothatheowns.Tolistentoaprogramonthisradio,youneedtocarefullytunethefrequencyknobforwardandbackwardwhilemonitoringthequalityofthesounduntilfindingthebestfrequencyforreceivingthesignal.Inthisprocess,nobodyknowsthepreciserelationbetweentheangleoftheknobandthequalityofthesound.AfteracarefuldiscussionwithMasterZhang,XiaoLirealizesthatminimizingfisliketuningamachinewithmultipleknobs:justimaginethateachcomponentofxiscontrolledbyaknob,andf(x)representscertainperformanceofthemachine;oneshouldbeabletofindthebestxbytuningeachknobforwardandbackwardwhilemonitoringthevalueoff.Therefore,XiaoLiandMasterZhangproposeaniterativealgorithmforminimizingf,namedAutomatedForward/BackwardTuning(AFBT,Algorithm1).Atiterationk,considers2npoints{xk±tkei:i=1,...,n}byvaryingeachcomponentofxkorbackwardwithastepsizetk,setsyktotheonerenderingthesmallestvalueoff,andcheckswhetherykachievesasufficientdecreaseinf;ifyes,ittakesxk+1=ykanddoublesthestepsize;otherwise,itsetsxk+1=xkandhalvesthestepsize.Inkalgorithm,eidenotesthei-thcanonicalcoordinatevectorinRn(thei-thentryis1whilealltheothersare0);]_(·)istheindicatorfunction,sothat]_[f(xk)?f(yk)≥t2]equalskiff(xk)?f(yk)isatleastthesquareoftk,orelsethevalueisAlgorithm1AutomatedForward/BackwardTuning(AFBT)Inputx0∈Rnandt0>0.Fork=0,1,2,...,dothe k± 1:y:=argminf(y):y= tei,i=1,... k± k2:sk:=]_f(xk)?f(yk)≥ #Sufficientdecrease?Yes:sk=1;No:sk=k3:xk+1:=(1?sk)xk+ #Update4:tk+1:=22sk #Updatestepsize.sk=1:double;sk=:Nowwemakethefollowingassumptionsonthelossfunctionf:Rn→Assumption1.fisconvex.Thismeansf((1?α)x+αy)≤(1?α)f(x)+αf(y)forallx,y∈Rnandα∈[0,1].Assumption2.fisdifferentiableonRnand?fisL-LipschitzonAssumption3.fislevel-bounded,meaningthat{x∈Rn|f(x)≤λ}isaboundedsetforanygivenλ∈R.BasedonAssumptions1and2,wecanprove ?f(x),y?x)≤f(y)?f(x)≤?f(x),y?x)+2lx?forallx,y∈Rn;Assumptions1and3ensurethatfhasafiniteminimumf?onRn.Formorepropertiesofconvexfunctions,seeanytextbookonconvexanalysis.

f(xk)=fR5Proof.Assumethatf(xk)--f-f?.Thenfk0(xk)?f?]>0since{f(xk)}isnon-increasing,Denotegk=?f(xk).Theninfk≥0k>0(Pickanx?withf(x?)=f?.Thenf(xk)?f?≤gk,xk?x?)bytheconvexityoff;meanwhile,{xk}isboundedduetothemonotonicityof{f(xk)}andthelevel-boundednessoff.Thusinfk≥0k>0).Inotherwords,thereexistsanε>0suchthatk≥εforallk≥0.Givenanyk≥0,wecanpickanik∈{1,...,n}satisfying|gk,eik)|≥k≥ withκ=/√n.i

2f(yk)≤min{f(xk±tkek)}≤f(xk)?tk|gk,ek)|+2

≤f(xk)?κεtk+2.

tk

L+kwewillhavef(yk)≤f(xk)?t2,whichrenderssk=1andhencetk+1=2tk.Itistheneasytoseethat{tk}hasapositivelowerbound,namelykk0L+ ≥t≡min{t,κε}> for k≥k0L+Thussk=1forinfinitelymanyk(otherwise,tk→0),andfk)?(xk+1)≥t2foreachofsuchk,contradictingthelower-boundednessoff.Theproofiscomplete.Letnbeapositiveinteger.Foranypositiveintegerk,write0k=g...,0}thek×kzeromatrix.

( Y (

bea(2n+1)×(2n+1)matrix,whereA=(xi,j)1≤i≤n,1≤j≤n+1isann×(n+1)realmatrixandAtdenotesthetransposeofA,thatis,the(n+1)×nmatrixwhose(j,i)-entryxi,jProofQuestion(10points)Acomplexnumberλiscalledaneigenvalueofak×kmatrixXifXv=λvforsomenonzerocolumnvectorv=(x1,...,xk)t.Showthat:0isaneigenvalueofYandeveryothereigenvalueofYisoftheform±√λwhereλisanon-negativerealeigenvalueofIProofQuestion(15points)Letn=3anda1,a2,a3,a4befourdistinctpositiverealnumbers.Iaia aijji =ai

+a

i4j (a+ai4j(1≤i≤3,1≤j≤4),where

1ifi=f0ifi/=f

.Showthat:Yhas7.、'R6Proof.(i)WriteIn=diag{1,...,1}forthen×nidentitymatrix..、'det(λI2n+1?Y)=λdet(λ2In?Then,0isaneigenvalueofYandeveryothereigenvalueofYisoftheform±√λλisanon-negativerealeigenvalueof

(ii)Putu=(a4,a4,a4)andv=

1a4

2a4

3a4).Bycalculationwe13AAt=diag{a2,...,a2}+utu?13Letf(s)=det(sIn?AAt)bethecharacteristicpolynomialofAAt.Then,byf(ai)i(f(ai)i(ai?ajforeachi∈{1,2,3,4}.Letal,al,al,albethedescendingre-orderingofa1,a2,a3,1234Then,weget:AAthasthreedistincteigenvaluesb2,b2,b3whereb1,b2,b3are1234

a21l>b1>a21

>b2>

>b3>al34Then,by(i)Yhas7distinctreal34afunction(Sf)(x)onRby(Sf)(x)

rr

fQuestionandAnswer(10points)FindexplicitformsofS(12)and 122 (1+xQuestionandAnswer(15points)Foranyintegerk,writefk(x)=(1+x2)?1?k.Whenk≥1,findconstantsc1,c2suchthatthefunctiony=(Sfk)(x)solvesasecondorderdifferentialequationxyll+c1yl+c2xy=R7Answer. WriteVforthespaceofcomplex-valued,continuousandabsolutelyintegrablefunctionsonR.Lemma (i)Iff(x)∈V,fl(x)∈Vandlimx→∞f(x)=0,(Sfl)(x)=πS (ii)Iff(x)∈Vandxf(x)∈V,(Sf)l=2πiS(xf Proof.

r(Sfr

f=

f(u)|+∞

r(e2πiux)lfrr=r

f=πS(ii)Foranya,b∈Rwitha<r22πiS(xfaarrbrr a

ufr+∞r(nóng)= (=(

fr r

f(u)du

rr

f=(Sf)(b)?(SfThus,(Sf)l=2πiS(xfCorollary (i)Assumethatf,fl,Sf,x(Sf)(x)∈V

f(x)=If(S(Sf))(x)=f(?x),then(S(Sfl))(x)=f(ii)Assumethatf(x),xf(x),Sf,(Sf)l∈Vlim(Sf)(x)=If(S(Sf))(x)=f(?x),thenS(S(xf(x)))=?xfLemma (i)S((1+x2)?1)=(ii)S(πe?2π|x|)=(1+rr(Sf)(x)

A

?A1+uCA:={z=u+iv:?A≤u≤A,v= {z=Aeiθ:0≤θ≤uNotethat,iistheonlypoleof12insidethedomainboundedbyCAwheneverA>1.UsingthetrickofcontourintegralandlettingA→∞,weget(Sf)(x)=πe?2πx.Sincef(x)isanevenfunction,sois(Sf)(x).Then,(Sf)(x)=πe?2π|x|.(ii)Writeg(x)=πe?2π|x|.Bydirectrr∞ rr

∞= 0

+

1

e?2π(1?ix)u=?21

1+

1? 1+x2Lemma (i)Foranyk≥0,Sfkisoftheform(Sfk)x=e?2π|x|gk(|x|)whereisapolynomialofdegree(ii)Foranyk≥0,S(S(fk))=fkandS(S(xfk+1(x)))=?xfk+1(x).Proof.(i)Wehavearecursiverelation

=

+2(k+

xflkByLemma0.1,wegetarecursiverelationfork

=

?2(k+

k(ii)Notethatfl(x)=?2(k+1)xfk+1(x)and(xfk(x))l=kkkk1Bytheconclusionofpart(i)andLemma0.1,weseethattheassumptionsinCorollaryk0.2areallsatisfiedforfk(x)andxfk+1(x)(k≥0).Then,oneshowsbyinductionS(S(fk))=fk(x)andS(S(xfk+1(x)))=?xfk+1(x)foranyk≥Backtotheproblem.(i)ItisshowninLemma0.3thatS((1+x2)?1)=By(5),weBy(6),weget

S(?2x(1+x2)?2)=π2π|S(?2x2(1+x2)?2)=?π(1?2S((1+x2)?2)=π(1+2(ii)Firstly,xjfk(x)(0≤j≤2k)areallabsolutelyintegrablewhenk≥1.Then,(6),y=(Sfk)(x)isa2k-thordercontinuousdifferentiablefunction.ByLemma0.1andLemma0.4,xyll+c1yl+c2xy=0isequivalenttokk(x2fl+kk

c2kk f=kk1Inputtingfk(x)=(1+x2)?1?k,wegetc1=?2kandc2=1caresabouthowthenumberoftheactivecustomersincreasesintime,andalsowouldliketoinvestigatehowcertaintraitsofthecustomersevolveovertime.Wedenotethepopulationdensityofthecustomersbyn(t,x),wheretisthetimevariableandxrepresentshowlonganactivecustomerhasbeenusingthissoftware.WeassumethatAssumption1.Whenacustomerkeepsusingthesoftware,hisorherusagetimelengthxincreaseslinearlyintime.Assumption2.Whenacustomerusesthesoftware,heorshemaystopusingitwithastoppingrated(x)>0.Here,weassumethestoppingrateonlydependsonx.Therateofchangeinthenumberofcustomersduetotheadvertisementsisdenotedbyc(t).s.Theeffectiverecommendationrateisdenotedbyb(x),whichisrelatedtothecustomer’susagetimelength.Weassumeatt=0,thepopulationdensityisgiven,n(0,x)=n0(x).Wecanderivethatthetimeevolutionofn(t,x)isgivenby0Jf?n(t,x)+?n(t,x)+d(x)n(t,x)= t≥0,x≥N(t):=n(0Jf?n(t,x)+?n(t,x)+d(x)n(t,x)= t≥0,x≥+b,d∈L∞(0,∞),thatis,b(x)andd(x)arepositiveand(essentially)bounded.Fromthispointon,wealsoassumec(t)≡0forsimplicityofanalysis.+formallyderivethepartialdifferentialequationthatn(t,x)satisfiesasin(7),andexpressionsduringthederivation.Also,explainthemeaningofN(t)asgiveninN(t)andb(x).Tofulfilthistask,deriveanequationthatN(t)satisfies,suchthattheequationonlycontainsN(t),n0(x),b(x)andd(x),butn(t,x)doesnotappearinthisequation.ProvethatN(t)satisfiesthefollowingestimate|N(t)|≤∞

r∞r(nóng)0

|n0(x)| wherel·l∞denotestheL∞ProofQuestion(10points)Finally,weaimtoexplorethelongtimeasymp-toticbehaviorofthepopulationdensityn(t,x).Sincethetotalnumbermightbeincreasing,itismoreconvenienttoworkwithanormalizeddensityfunction. ?l(x)+(λ+d(x))?(x)= 0?(x)> ?(0)=J∞b(x)?(x)dx=0ψ(x)≥∞ψ(x)?(x)dx=ψ(x)≥∞ψ(x)?(x)dx=00Wedefinethenormalizeddensity?(t,x):=n(t,x)e?λ0t.Provethatforanyr H:R+→R+withH(0)=0,wer rλtrλt

dt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論