版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆重慶市江津長壽巴縣等七校高三二診模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.3.己知集合,,則()A. B. C. D.4.復數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.5.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值6.甲、乙兩名學生的六次數(shù)學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數(shù)大于乙同學成績的中位數(shù);②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④7.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40408.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.9.已知命題:,,則為()A., B.,C., D.,10.近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.11.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.12.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.14.已知函數(shù),若函數(shù)有6個零點,則實數(shù)的取值范圍是_________.15.已知,,且,若恒成立,則實數(shù)的取值范圍是____.16.設函數(shù),當時,記最大值為,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)某網(wǎng)絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.19.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.20.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.21.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.22.(10分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨??;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎題.2、B【解析】
列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當,時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于基礎題型.3、C【解析】
先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎題.4、B【解析】
利用乘法運算化簡復數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數(shù)的概念及復數(shù)的乘法運算,考查學生的基本計算能力,是一道容易題.5、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.6、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數(shù)為,乙同學成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).7、D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學生的計算能力和應用能力.8、B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.9、C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.10、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關命題真假的判斷,計算出相應的頻數(shù)與頻率是關鍵,考查數(shù)據(jù)處理能力,屬于基礎題.11、C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.12、A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.14、【解析】
由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【詳解】當時,函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實數(shù)滿足,當時,由對勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當時,,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數(shù)關于直線對稱,則函數(shù)關于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查分段函數(shù)的應用,復合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學思想,等價轉(zhuǎn)化的數(shù)學思想等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.15、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值16、【解析】
易知,設,,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設,,令,當時,,所以單調(diào)遞減令,當時,,所以單調(diào)遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.18、(1)元;(2)32家;(3)分布列見解析;【解析】
(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學期望【點睛】本題考查應用頻率分布直方圖求平均數(shù)和頻數(shù),考查離散型隨機變量的分布列和期望,屬于基礎題.19、.【解析】
根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.20、(1)證明見解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 孕期春夢的健康宣教
- 《設尋租理論王》課件
- 社會媒體營銷的總結(jié)與展望計劃
- 線上藝術教學的創(chuàng)新嘗試計劃
- 科學管理班級時間的有效方式計劃
- 如何實現(xiàn)部門間的年度協(xié)同目標計劃
- 森林防火安全培訓
- 制定財務風險控制的措施計劃
- 如何分析企業(yè)財務數(shù)據(jù)計劃
- 頭孢類抗菌藥物相關行業(yè)投資規(guī)劃報告
- 最新【SD高達G世紀-超越世界】各強力機體開發(fā)路線
- 完整MAM-KY02S螺桿空壓機控制器MODBUSⅡ通信協(xié)議說明
- 《納米材料工程》教學大綱要點
- 專業(yè)英語四級聽力模擬題
- [廣州]污水處理廠工程監(jiān)理投標大綱(325頁完整)_secret
- 長春市勞動合同樣本(共10頁)
- 南京祿口機場二期擴建工程項目融資分析報告(第一稿)
- 《做陽光少年主題班會》PPT課件(1)
- 鄉(xiāng)鎮(zhèn)殯葬整治工作開展情況匯報
- 常用漢字繁簡對照表-拼音順序
- 會計用語中韓對照
評論
0/150
提交評論