2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷含解析_第1頁
2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷含解析_第2頁
2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷含解析_第3頁
2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷含解析_第4頁
2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省煙臺市第二中學高考壓軸卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關于的不等式的解集是()A. B. C. D.2.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結果是()A. B.C. D.3.將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調遞減,那么實數(shù)的最大值為()A. B. C. D.4.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.5.()A. B. C. D.6.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.7.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.8.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.9.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當?shù)氐拇逦瘯@三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明10.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.11.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]12.若,則下列關系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設隨機變量服從正態(tài)分布,若,則的值是______.14.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.15.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.16.已知,,分別為內角,,的對邊,,,,則的面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.18.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.19.(12分)已知,均為給定的大于1的自然數(shù),設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.20.(12分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.21.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.22.(10分)已知的內角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結合單調性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質應用,側重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).2、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.3、B【解析】

根據(jù)條件先求出的解析式,結合三角函數(shù)的單調性進行求解即可.【詳解】將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,則,設,則當時,,,即,要使在區(qū)間上單調遞減,則得,得,即實數(shù)的最大值為,故選:B.【點睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調性求參數(shù),屬于中檔題.4、C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.5、D【解析】

利用,根據(jù)誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.6、A【解析】

求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,

過點P作PM垂直于準線,M為垂足,

由拋物線的定義可得|PF|=|PM|=x+1,

記∠KPF的平分線與軸交于

根據(jù)角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質的簡單應用,直線的斜率公式、利用數(shù)形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.7、A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.8、C【解析】

根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關性質來研究指數(shù)型函數(shù)的性質,以及解指數(shù)型方程;屬于中檔題.9、B【解析】

將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.10、C【解析】

利用先求出,然后計算出結果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結果,較為基礎.11、B【解析】

作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.12、D【解析】

a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.14、【解析】

確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.15、【解析】

由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.16、【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由誘導公式計算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.【點睛】本題考查了三角函數(shù)中的恒等變換應用,屬于中檔題.18、(1);(2)4【解析】

(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉化原不等式為:,利用均值不等式即得解.【詳解】(1)當時不等式可化為當時,不等式可化為;當時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當且僅當:,即,即時等號成立∴,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19、(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】

(Ⅰ)當,時,,,,,,.即可得出.(Ⅱ)(i)當時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設,,,,其中,,,2,,.,可得,通過求和即可證明結論.【詳解】(Ⅰ)解:當,時,,,,,..(Ⅱ)證明:(i)當時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設,,,,其中,,,2,,.,..【點睛】本題主要考查等差數(shù)列與等比數(shù)列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.20、(1)(2){1,2}.【解析】

(1)求解導數(shù),表示出,再利用的導數(shù)可求m的取值范圍;(2)表示出,結合二次函數(shù)知識求出的最小值,再結合導數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數(shù),則,設,則,令,則,所以單調遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,因為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論