浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題(解析版)_第1頁
浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題(解析版)_第2頁
浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題(解析版)_第3頁
浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題(解析版)_第4頁
浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高級中學(xué)名校試卷PAGEPAGE1浙江省金華十校2023-2024學(xué)年高一上學(xué)期期末調(diào)研考試數(shù)學(xué)試題一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.()A. B. C. D.【答案】C【解析】.故選:C.2.已知集合,,若,則實數(shù)可以為()A.1 B.3 C.4 D.7【答案】D【解析】由,知,C不可能;由,知且,否則中有元素1或者3,矛盾,即AB不可能;當(dāng)時,,符合題意,因此實數(shù)可以為7.故選:D.3.若對于任意,不等式恒成立,則實數(shù)的取值范圍是()A B.C. D.【答案】A【解析】令函數(shù),顯然在上單調(diào)遞減,,因為任意,不等式恒成立,于是,所以.故選:A.4.哥哥和弟弟一起拎一重量為的重物(哥哥的手和弟弟的手放在一起),哥哥用力為,弟弟用力為,若,且的夾角為120°時,保持平衡狀態(tài),則此時與重物重力之間的夾角為()A.60° B.90° C.120° D.150°【答案】C【解析】根據(jù)力的平衡,的合力為,如圖所示:由于,且的夾角為,則為等邊三角形,則,則與重物重力之間的夾角為.故選:C.5.“”是“函數(shù)的定義域為”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】函數(shù)的定義域為則恒成立,即,解得,故“”是“函數(shù)的定義域為”的必要不充分條件.故選:B.6.已知函數(shù),,是正實數(shù).若存在唯一的實數(shù),滿足,則的最小值為()A.46 B.48 C.52 D.64【答案】B【解析】根據(jù)函數(shù),是正數(shù),且存在唯一的實數(shù),滿足,可得,即,由,則,所以,故.故選:B.7.某種廢氣需要經(jīng)過嚴格的過濾程序,使污染物含量不超過20%后才能排放.過濾過程中廢棄的污染物含量(單位:)與時間(單位:)之間的關(guān)系為,其中是原有廢氣的污染物含量(單位:),是正常數(shù).若在前消除了20%的污染物,那么要達到排放標準至少經(jīng)過(答案取整數(shù))()參考數(shù)據(jù):,,,A. B. C. D.【答案】B【解析】由題有,設(shè)小時后污染物含量不超過,則,解得,即至少經(jīng)過29小時能達到排放標準.故選:B.8.若實數(shù),滿足,則()A. B.C. D.【答案】C【解析】設(shè),則為偶函數(shù),設(shè),則因為在上均為增函數(shù),故,故,故在上為增函數(shù),且為偶函數(shù).又,則,即,當(dāng)且僅當(dāng)時取等號.故,故.故選:C.二、多項選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,有選錯的得0分,部分選對的得2分.9.在中()A.若,則 B.若,則C. D.【答案】ACD【解析】對A,在中,由余弦函數(shù)單調(diào)性可得,故A正確;對B,若為鈍角,為銳角,則,故B錯誤;對C,,故C正確;對D,,故D正確.故選:ACD.10.已知()()A.當(dāng)時,的值域為 B.當(dāng)時,C.當(dāng)時,是偶函數(shù) D.當(dāng)時,是奇函數(shù)【答案】BC【解析】當(dāng)時,,此時的值域為,故A錯誤,當(dāng)時,在上單調(diào)遞增,所以,B正確,當(dāng)時,,,所以是偶函數(shù),C正確,當(dāng)時,,,則,,定義域不關(guān)于原點對稱,故為非奇非偶函數(shù),D錯誤.故選:BC.11.已知函數(shù)()的最小正周期為,則()A.B.函數(shù)在上為增函數(shù)C.是的一個對稱中心D.函數(shù)的圖像關(guān)于軸對稱【答案】BD【解析】對A,,又最小正周期為,故,則,故A錯誤;對B,,當(dāng)時,,為正弦函數(shù)的單調(diào)遞增區(qū)間,故B正確;對C,,故不是的一個對稱中心,故C錯誤;對D,為偶函數(shù),圖像關(guān)于軸對稱,故D正確.故選:BD.12.已知函數(shù),則()A.函數(shù)是周期函數(shù)B.函數(shù)有最大值和最小值C.函數(shù)有對稱軸D.對于,函數(shù)單調(diào)遞增【答案】BC【解析】因為,對于C選項,因為,所以,函數(shù)的圖象關(guān)于直線對稱,C對;對于D選項,因,,故函數(shù)在上不單調(diào),D錯;對于B選項,因為函數(shù)的圖象關(guān)于直線對稱,要求函數(shù)的最大值和最小值,只需求出函數(shù)在上的最大值和最小值即可,設(shè),當(dāng)時,,令,因為函數(shù)在上單調(diào)遞增,函數(shù)在上單調(diào)遞增,所以,函數(shù)在上單調(diào)遞增,當(dāng)時,,因為函數(shù)、在上均為增函數(shù),所以,函數(shù)在上為增函數(shù),所以,函數(shù)在上為增函數(shù),由對稱性可知,函數(shù)在上為減函數(shù),故函數(shù)在處取得最大值,且,故函數(shù)在處取得最小值,且最小值為,當(dāng)時,則,則函數(shù)在上為減函數(shù),對任意的、,且,則,,則,由不等式的基本性質(zhì)可得,即,所以,函數(shù)在上單調(diào)遞減,又因為當(dāng)時,函數(shù)取得最大值,故函數(shù)僅在處取得最大值,對任意的,,,若,則,若,則,則,則,所以,.綜上所述,對任意的,,又因為函數(shù)在上單調(diào)遞減,故當(dāng)時,在處取得最小值,綜上所述,函數(shù)既有最大值,也有最小值,C對;對于A選項,由C選項可知,函數(shù)僅在處取得最大值,若函數(shù)是以為周期的周期函數(shù),則,與題意矛盾,故函數(shù)不可能是周期函數(shù),A錯.故選:BC.三、填空題:本題共4小題,每小題5分,共20分.13.______0(填>或<).【答案】>【解析】,故2對應(yīng)的角度終邊在第二象限,則.14.函數(shù)(為月份),近似表示某地每年各個月份從事旅游服務(wù)工作的人數(shù),游客流量越大所需服務(wù)工作的人數(shù)越多,則可以推斷,當(dāng)______時,游客流量最大.【答案】8【解析】因為,所以,所以當(dāng),即時,取最大值,所以時,取最大值,又游客流量越大所需服務(wù)工作的人數(shù)越多,所以時,游客流量最大.15.已知函數(shù)則方程的所有根之積為______.【答案】【解析】令,由可得,當(dāng)時,由,即,則,即方程無解;當(dāng)時,由,可得或.(1)當(dāng)時,當(dāng)時,由可得,解得,,當(dāng)時,由可得,;(2)當(dāng)時,當(dāng)時,由可得,,方程無解,當(dāng)時,由可得,,因此,方程的所有根之積為.16.若函數(shù)的值域為,則實數(shù)的最小值為______.【答案】【解析】根據(jù)題意,函數(shù)定義域為,因為的值域為,所以在上恒成立,當(dāng)時,則,則,此時必有,變形可得,當(dāng)時,則,則,此時必有,變形可得,綜合可得:在上恒成立,設(shè),,則,因為,所以且,由基本不等式可得,即,所以,因為在上恒成立,所以,解得,故實數(shù)的最小值為.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.計算下列各式的值:(1);(2).解:(1)結(jié)合題意可得:.(2)結(jié)合題意可得:.18.已知向量,.(1)若,求的坐標;(2)若,求與的夾角.解:(1)由題意,設(shè).,,,或.(2),,,即,.設(shè)與的夾角為,則.又,,與的夾角為.19.已知函數(shù).(1)求函數(shù)的最小正周期與對稱軸方程;(2)當(dāng)且時,求的值.解:(1)由題設(shè)有,所以,函數(shù)的最小正周期是,由,可得,所以,函數(shù)的對稱軸方程為.(2)由得,即,因為,所以.若,則與,矛盾,則.從而.于是.20.如圖,在扇形中,半徑,圓心角,是扇形弧上的動點,過作的平行線交于.記.(1)求的長(用表示);(2)求面積的最大值,并求此時角的大?。猓海?)過,作的垂線,垂足分別為,,則,,,.(2).,,,即時,,因此,當(dāng)時,面積最大值為.21.已知函數(shù).(1)當(dāng)時,討論的單調(diào)性(不必給出證明);(2)當(dāng)時,求的值域;(3)若存在,,使得,求的取值范圍.解:(1)當(dāng)時,,因為為減函數(shù),為增函數(shù),故在上單調(diào)遞減.(2)當(dāng)時,,當(dāng)且僅當(dāng)時取等號;所以的值域為.(3)令,則問題等價于存在,,使得,令,因為在有兩個零點,故,即,解得.由韋達定理和根的定義可知:,.,又因為,故的取值范圍為.22.二次函數(shù)的最大值為,且滿足,,函數(shù).(1)求函數(shù)的解析式;(2)若存在,使得,且的所有零點構(gòu)成的集合為,證明:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論