版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市知春里中學2025屆高考數(shù)學二模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立3.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.4.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.25.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.16.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.7.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.8.已知,則的值等于()A. B. C. D.9.雙曲線x2a2A.y=±2x B.y=±3x10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-312.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點,則長度的最大值為____.14.已知,滿足約束條件則的最小值為__________.15.已知雙曲線C:()的左、右焦點為,,為雙曲線C上一點,且,若線段與雙曲線C交于另一點A,則的面積為______.16.已知命題:,,那么是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.18.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.19.(12分)在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.20.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.21.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.22.(10分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉化與化歸思想,函數(shù)零點轉化為方程的解,方程的解再轉化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.2、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.3、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.4、D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.5、B【解析】
先根據(jù)導數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數(shù),結合導數(shù)求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數(shù)圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點睛】本題考查了導數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數(shù)關系式.本題的易錯點是計算.6、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.7、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.8、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題9、A【解析】分析:根據(jù)離心率得a,c關系,進而得a,b關系,再根據(jù)雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a210、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.11、D【解析】
設,,設:,聯(lián)立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設直線為可以簡化運算,是解題的關鍵.12、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數(shù)形結合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.14、【解析】
畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內(nèi)部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數(shù)的最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.15、【解析】
由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點A坐標,借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點A坐標為,所以.【點睛】本題主要考查直線與雙曲線的位置關系,考查雙曲線方程的求解,考查求三角形面積,考查學生的計算能力,難度較難.16、真命題【解析】
由冪函數(shù)的單調(diào)性進行判斷即可.【詳解】已知命題:,,因為在上單調(diào)遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)依題意可知,直線的極坐標方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標方程為(),當時,聯(lián)立解得交點,當時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當時,無交點;綜上,曲線與直線的點極坐標為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點睛】本題考查直線與曲線交點的極坐標、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.18、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調(diào)性的定義判斷數(shù)列中偶數(shù)項構成的數(shù)列的單調(diào)性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列的通項公式的求法,考查正實數(shù)的取值范圍的求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是中檔題.19、(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標方程中,得到關于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|?|AQ|的值.【詳解】(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù)).設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數(shù)方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【點睛】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓練了直線參數(shù)方程中參數(shù)t的幾何意義的應用,是中檔題.20、見解析【解析】
(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調(diào)遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設,,顯然函數(shù)在上單調(diào)遞增,當時,,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 3 Faster,highter,stronger Understanding Ideas The road to success群文閱讀說課稿 2024-2025學年高中英語人教版選擇性必修第一冊
- 2025年銷售計劃和目標 銷售計劃書案例
- 2025年幼兒園安全工作計劃書
- 2025年財務的工作計劃
- 2025年大班美術興趣班工作計劃
- 2025年開發(fā)區(qū)工作總結和2025年工作計劃
- 2025年春季“開學第一課”活動計劃
- 2025年幼兒園后勤工作計劃秋季范文
- Unit 2 Animals Listening and viewing說課稿-2024-2025學年高中英語上外版必修第二冊
- 2025年律師個人工作計劃范文
- 現(xiàn)代學徒制課題:數(shù)字化轉型背景下新型師徒關系構建研究(附:研究思路模板、可修改技術路線圖)
- 9.2溶解度(第2課時)-2024-2025學年九年級化學人教版(2024)下冊
- 安徽省合肥市包河區(qū)2023-2024學年三年級上學期語文期末試卷
- 2024版食源性疾病培訓完整課件
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢發(fā)布)
- 護理組長年底述職報告
- 巨量引擎合同范本
- 《住院患者身體約束的護理》團體標準解讀課件
- 初中語文:非連續(xù)性文本閱讀練習(含答案)
- 中考英語過去將來時趣味講解動態(tài)課件(43張課件)
- 零星維修工程施工方案(定)
評論
0/150
提交評論