上海師范大學天華學院《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷_第1頁
上海師范大學天華學院《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷_第2頁
上海師范大學天華學院《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷_第3頁
上海師范大學天華學院《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷_第4頁
上海師范大學天華學院《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁上海師范大學天華學院

《平面設(shè)計研發(fā)與制作》2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設(shè)要分析一段監(jiān)控視頻中的人員行為,以下關(guān)于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復雜的多人交互場景無法進行有效的分析2、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波3、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務。假設(shè)要識別一段體育比賽視頻中的運動員動作,以下關(guān)于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結(jié)合空間和時間維度的特征來描述動作4、計算機視覺中的視頻目標跟蹤中,假設(shè)目標在跟蹤過程中發(fā)生了嚴重的形變。以下關(guān)于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網(wǎng)絡在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性5、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設(shè)醫(yī)學圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)6、計算機視覺中的顯著性檢測旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復雜的自然風景圖像中檢測顯著性區(qū)域,以下關(guān)于顯著性檢測方法的描述,哪一項是不正確的?()A.基于對比度的方法通過計算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學習方法能夠?qū)W習圖像的全局和局部特征,實現(xiàn)更準確的顯著性檢測D.顯著性檢測的結(jié)果總是與人類的視覺注意力機制完全一致,沒有偏差7、在計算機視覺的人臉識別任務中,假設(shè)要實現(xiàn)一個能夠在不同光照和表情下準確識別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預處理的步驟,哪一項是最重要的?()A.對人臉圖像進行歸一化處理,統(tǒng)一大小和亮度B.對圖像進行銳化處理,增強面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機裁剪圖像,增加數(shù)據(jù)多樣性8、在計算機視覺的圖像分割任務中,假設(shè)要對細胞圖像進行精細分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準確的?()A.模型對細胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓練時間和計算資源需求D.模型的知名度和在學術(shù)圈的引用次數(shù)9、在計算機視覺的圖像配準任務中,需要將不同時間或視角拍攝的圖像進行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進行精確配準,圖像中存在地形變化和云層遮擋。以下哪種圖像配準方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準B.基于灰度的配準C.基于變換模型的配準D.基于深度學習的配準10、假設(shè)要構(gòu)建一個能夠?qū)Ψb進行款式和顏色識別的計算機視覺系統(tǒng),用于時尚推薦和庫存管理。在處理服裝圖像時,由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設(shè)計的特征B.基于深度學習的自動特征C.顏色直方圖D.以上都是11、計算機視覺中的視頻理解任務包括對視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項是不正確的?()A.可以通過對視頻中的幀進行分類、目標檢測和跟蹤來實現(xiàn)視頻理解B.深度學習中的注意力機制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準確性C.視頻理解只需要關(guān)注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識圖譜和語義理解技術(shù),對視頻中的內(nèi)容進行更深入的分析和解釋12、在計算機視覺的圖像修復任務中,恢復圖像中缺失或損壞的部分。假設(shè)要修復一張老照片中缺失的部分,以下關(guān)于圖像修復方法的描述,正確的是:()A.基于紋理合成的圖像修復方法能夠完美恢復復雜的結(jié)構(gòu)和細節(jié)B.深度學習中的自編碼器在圖像修復中無法學習到有效的特征表示C.圖像修復的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗知識和上下文信息的深度學習方法可以產(chǎn)生更合理和自然的修復效果13、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有著重要的應用。假設(shè)要在VR游戲中實現(xiàn)真實的場景交互。以下關(guān)于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進行識別,實現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實場景進行準確的融合和匹配C.計算機視覺技術(shù)可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應用不存在任何技術(shù)挑戰(zhàn)和限制14、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務。以下關(guān)于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短期記憶網(wǎng)絡(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)15、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法16、當處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果17、計算機視覺在文物保護和修復中的應用逐漸增多。假設(shè)要對一幅古老的繪畫進行數(shù)字化修復和增強,以下關(guān)于顏色恢復的挑戰(zhàn),哪一項是最為顯著的?()A.由于年代久遠,原畫作的顏色信息缺失嚴重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復C.缺乏對原畫作創(chuàng)作時所用顏料的了解,難以準確還原顏色D.修復過程中可能引入新的顏色偏差,影響修復效果18、計算機視覺中的動作識別用于分析視頻中的人體動作。假設(shè)要識別一段舞蹈視頻中的動作類別。以下關(guān)于動作識別方法的描述,哪一項是不準確的?()A.可以基于時空特征提取的方法,捕捉動作在時間和空間上的變化B.深度學習中的循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短時記憶網(wǎng)絡(LSTM)適用于動作序列的分析C.動作識別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動作識別的準確率19、計算機視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學習方法在眼底圖像分析中能夠自動提取特征和進行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學知識標注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷20、當利用計算機視覺進行圖像去模糊任務,恢復清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是21、計算機視覺中的視覺跟蹤在監(jiān)控、機器人導航等領(lǐng)域有廣泛應用。假設(shè)一個機器人需要跟蹤一個移動的物體,同時適應物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學習的孿生網(wǎng)絡跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運動估計的跟蹤方法22、在計算機視覺的視覺跟蹤與監(jiān)控應用中,需要對特定目標進行持續(xù)的跟蹤和監(jiān)測。假設(shè)要對一個在大型商場中移動的可疑人員進行跟蹤,同時要應對人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標跟蹤算法B.基于深度學習的單目標跟蹤C.基于粒子濾波的跟蹤D.基于特征匹配的跟蹤23、在計算機視覺的圖像融合任務中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果24、在計算機視覺的視頻目標跟蹤中,假設(shè)目標在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項是不太有效的?()A.利用目標在遮擋前的運動軌跡預測其位置B.完全放棄對被遮擋目標的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標的外觀特征和運動信息進行跟蹤D.借助周圍背景和其他相關(guān)物體的信息輔助跟蹤25、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設(shè)要對一段監(jiān)控視頻中的人員動作進行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復雜的動作變化,準確率高B.深度學習中的循環(huán)神經(jīng)網(wǎng)絡(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡能夠同時處理空間和時間維度的信息,適用于動作識別任務D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強的通用性26、在計算機視覺的目標跟蹤任務中,持續(xù)跟蹤視頻中的特定目標。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預測目標的位置和狀態(tài)B.基于深度學習的方法能夠?qū)W習目標的外觀特征,提高跟蹤的準確性和魯棒性C.目標跟蹤過程中,目標的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能27、在計算機視覺中,圖像分類是一項重要任務。假設(shè)我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色,能夠自動學習圖像的特征B.傳統(tǒng)的機器學習方法如支持向量機(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準確率,可以使用數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴充數(shù)據(jù)集28、在計算機視覺的圖像壓縮任務中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無損壓縮方法,如PNGC.不進行任何壓縮,直接存儲原始圖像D.隨機刪除圖像中的部分像素29、在計算機視覺的醫(yī)學圖像分析中,輔助醫(yī)生進行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學圖像計算機視覺應用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗知識和計算機視覺技術(shù)能夠提高腫瘤檢測的準確性和可靠性D.醫(yī)學圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響30、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中的應用可以提供更沉浸式的體驗。假設(shè)要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應地更新場景,以下關(guān)于VR/AR計算機視覺應用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論