2024年電動(dòng)汽車(chē)電池供應(yīng)鏈可持續(xù)性-生命周期的影響和回收的作用報(bào)告(英文版)-IEA國(guó)際能源署_第1頁(yè)
2024年電動(dòng)汽車(chē)電池供應(yīng)鏈可持續(xù)性-生命周期的影響和回收的作用報(bào)告(英文版)-IEA國(guó)際能源署_第2頁(yè)
2024年電動(dòng)汽車(chē)電池供應(yīng)鏈可持續(xù)性-生命周期的影響和回收的作用報(bào)告(英文版)-IEA國(guó)際能源署_第3頁(yè)
2024年電動(dòng)汽車(chē)電池供應(yīng)鏈可持續(xù)性-生命周期的影響和回收的作用報(bào)告(英文版)-IEA國(guó)際能源署_第4頁(yè)
2024年電動(dòng)汽車(chē)電池供應(yīng)鏈可持續(xù)性-生命周期的影響和回收的作用報(bào)告(英文版)-IEA國(guó)際能源署_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

EVBatterySupply

ChainSustainability

Lifecycleimpactsandtheroleofrecycling

>

>

INTERNATIONALENERGY

AGENCY

TheIEAexaminesthefull

spectrum

ofenergyissues

includingoil,gasandcoalsupplyand

demand,renewableenergytechnologies,electricitymarkets,energyefficiency,

accesstoenergy,demandside

managementandmuchmore.Throughitswork,theIEAadvocates

policiesthatwillenhancethereliability,

affordabilityand

sustainabilityofenergyinits

32Membercountries,13Associationcountriesandbeyond.

Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationof

internationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.

Source:IEA.

InternationalEnergyAgencyWebsite:

IEAMembercountries:

AustraliaAustria

BelgiumCanada

CzechRepublic

DenmarkEstonia

Finland

France

GermanyGreece

HungaryIreland

Italy

Japan

Korea

Latvia

Lithuania

LuxembourgMexico

NetherlandsNewZealandNorway

Poland

Portugal

SlovakRepublicSpain

Sweden

Switzerland

RepublicofTürkiyeUnitedKingdom

UnitedStates

TheEuropean

CommissionalsoparticipatesintheworkoftheIEA

IEAAssociationcountries:

ArgentinaBrazil

China

Egypt

India

IndonesiaKenya

MoroccoSenegal

Singapore

SouthAfricaThailand

Ukraine

EVBatterySupplyChainSustainabilityHighlights

IEA.CCBY4.0.

PAGE|3

Highlights

Batterydemandissettocontinuegrowingfastbasedoncurrentpolicysettings,increasingfour-and-a-halftimesby2030andmorethanseventimesby2035.Theroleofemergingmarketsanddevelopingeconomies(EMDEs)otherthanPeople’sRepublicofChina(hereafter,“China”)isexpectedtogrow,reaching10%ofglobalbatterydemandby2030,upfrom3%in2023.Batteryproductionisalsoexpectedtodiversify,mostlythankstoinvestmentsinEuropeandNorthAmericaundercurrentpolicies,and–ifallannouncedclimatepledgesarefulfilled–throughlargerdemandandproductioninEMDEsotherthanChina.

Fromalifecycleperspective,theemissionsofamedium-sizebatteryelectriccararehalftheemissionsofanequivalentinternalcombustionengine(ICE)carasaglobalaverage.ThisdifferenceinemissionsissimilartotheglobalaverageinChina,largerintheUnitedKingdomandChile(over60%),andsmallerinIndia(20%).

Battery-relatedemissionsplayanotableroleinelectricvehicle(EV)lifecycleemissions,thoughtheyarenotthelargestcontributor.However,reducingemissionsrelatedtobatteryproductionandcriticalmineralprocessingremainsimportant.Emissionsrelatedtobatteriesandtheirsupplychainsaresettodeclinefurtherthankstotheelectrificationofproductionprocesses,increased

energydensityanduseofrecycledmaterials.

Inthenextdecade,recyclingwillbecriticaltorecovermaterialsfrommanufacturingscrap,andlookingfurtherahead,torecycleend-of-lifebatteriesandreducecriticalmineralsdemand,particularlyafter2035,whenthenumberofend-of-lifeEVbatterieswillstartgrowingrapidly.Ifrecyclingisscaledeffectively,recyclingcanreducelithiumandnickeldemandby25%,andcobaltdemandby40%in2050,inascenariothatmeetsnationalclimatetargets.Scalinguprecyclingfacilitiesandincreasingcollectionratesofend-of-lifebatterieswillbeessential.

Second-handEVscouldboostelectricmobilityinEMDEsotherthanChina.Strengtheninginternationalco-operationiscentraltosupportinternationaltradeofsecond-handEVswhileensuringadequateend-of-lifestrategiesforthevehiclesandtheirbatteries.

EVBatterySupplyChainSustainabilityAcknowledgements

IEA.CCBY4.0.

PAGE|4

Acknowledgements

EVBatterySupplyChainSustainabilitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.AraceliFernandezPales,HeadoftheTechnologyInnovationUnit,providedstrategicguidancethroughoutthedevelopmentoftheproject.ElizabethConnellyco-ordinatedtheanalysisandproductionofthereport.

TheprincipalIEAauthorswereTeoLombardoandShobhanDhir.

ValuableinsightsandfeedbackwereprovidedbycolleaguesfromacrosstheIEA,includingHughHopewell,ApostolosPetropoulos,OskarasAl?auskasandMaxSchoenfisch.LizzieSayereditedthemanuscript.CharlotteBracke,AnnaKalista,MaoTakeuchiandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.

ThanksgototheIEA’sCommunicationsandDigitalOffice,particularlytoJethroMullen,PoeliBojorquez,CurtisBrainard,JonCuster,AstridDumond,MerveErdil,GraceGordon,JuliaHorowitz,OliverJoy,LorenzoSquillace,LucileWallandWonjikYang.

ThereportwaspreparedbytheInternationalEnergyAgencyundertheGlobalE-MobilityProgrammefundedbytheGlobalEnvironmentFacility.TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheGlobalEnvironmentFacility.Inparticular,wewouldliketoacknowledgetheUnitedNationsEnvironmentProgrammeastheleadimplementingagencyundertheprogrammeandalltheireffortsinco-ordinatingthepreparations,planningandroll-outofitsactivities.

EVBatterySupplyChainSustainabilityTableofcontents

IEA.CCBY4.0.

PAGE|5

Tableofcontents

Theroleofbatteriesisexpectedtokeepgrowing 6

Electriccarsremainthemainengineofbatterydemandgrowth 6

Outlookforbatterydemandandproduction 8

TheimpactofEVsandbatteriesonemissions 12

Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis 12

Batterychemistryimpactslifecycleemissions 15

Batteryrecyclingcanreducecriticalmineraldemandandimprovesustainability 17

Batteryrecyclingisgettingreadyforlargersuppliesinthe2030s 17

ImpactofusedEVexportsonrecycling 20

Policiestosupportbatterysustainabilityandcircularity 22

Currentpoliciesandinitiatives 22

Policyrecommendations 23

Annex 26

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

Theroleofbatteriesisexpectedtokeepgrowing

Electriccarsremainthemainengineofbatterydemandgrowth

GrowthinEVsalesandbatterystorage

1

installationscontinuetodrivebatterydemand,whichreached850GWhin2023,upmorethan40%from2022.EVsremainthemainsourceofbatterydemand,accountingfor750GWhoralmost90%ofthetotalin2023,withelectriccarsalonerepresentingabout80%oftotalbatterydemand.Batterystoragedemanddoubledinboth2022and2023,albeitfromalowerbasethandemandforEVbatteries.

OverallbatterydemandintheEuropeanUnionandtheUnitedStatesgrewfasterthantheglobalaveragein2023,reaching45%year-on-year,closelyfollowedbyChinaat40%.Intermsoftotalvolume,Chinaremainsthelargestbatterymarket,accountingforabout55%ofglobaldemandin2023,followedbytheEuropeanUnionandtheUnitedStates,atabout15%each.EMDEsotherthanChinatodayaccountforasmallshareoftotalbatterydemand,buttheirroleisexpanding.In2023,theirshareinglobalbatterydemandreachedmorethan3%,nearlydoublethatjust2yearsearlier.Indiaaccountedforalmostone-thirdofbatterydemandinEMDEsotherthanChina.

ThebatterystoragemarketisgrowingfastestinChina,wheredemandforbatterystoragesystemsreached45GWhin2023,almosttriplethedemandin2022.Demandforbatterystorageisdrivenbythegrowthinrenewableenergy,withChinainstallingmoreintermittentrenewablecapacitythantherestoftheworldcombinedin2023.IntheUnitedStatesandtheEuropeanUnion,thebatterystoragemarketgrewfasterthantheEVbatterymarket,butsignificantlyslowerthaninChina,withyear-on-yeargrowthofnearly65%andover80%,respectively.Thisisequivalenttoanadditional25GWhofbatterystorageintheUnitedStatesand12GWhintheEuropeanUnion.MarketsforbatterystoragearestillnascentinEMDEsotherthanChina,withlessthan1GWhintotaladdedin2023.MorethanhalfofthisdemandcamefromSoutheastAsia,followedbyAfricaandthen

1Batterystoragereferstobatteriesusedintheelectricitysector.Theyincludebothlargeutility-scaleandsmallerbehind-the-meterbatterystoragesystems.Utility-scalebatteriesareconnecteddirectlytotransmissionordistributionnetworks(front-of-the-meter)andtypicallyrangefromseveralhundredkWhtomultipleGWhinsize.Behind-the-meterbattery

storagesystemsaregenerallyinstalledatresidential,commercialorindustrialend-userlocations,withoutadedicatedconnectiontothegrid.Theyareusually(butnotalways)significantlysmallerthanutility-scalebatteries.

IEA.CCBY4.0.

PAGE|6

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

IEA.CCBY4.0.

PAGE|7

India,eachrepresentingashareofaround15%.Highercostofcapitalisamajorreasonforlowerbatterystorageinvestmentsinthoseregions,withthecostofcapitalforbatterystorageprojectsbeingatleast

twice

ashighasinadvancedeconomies.

Batterydemandbyapplicationandregion,2017-2023

GWh/year

Batterydemandbyapplication

900

800

700

600

500

400

300

200

100

0

2017201820192020202120222023

LDVTwo/three-wheelerBusTruckBatterystorage

Shareofbatterydemandbyregion

100%

80%

60%

40%

20%

0%

2017201820192020202120222023

ChinaEuropeanUnionUnitedStates

aEMDEs(exc.China)aOtherAEs

IEA.CCBY4.0.

Notes:LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.

Source:IEA(2024),

GlobalEVOutlook2024.

In2023,EVsaccountedforover95%ofthebatterydemandinEMDEsotherthanChina,abovetheglobalaverage(almost90%).Anotherstrikingdifferencefromtheglobalaverageisthatarelativelylargeshare(about25%)ofEVbatterydemandinEMDEscamefromtwo-andthree-wheelers(2/3-wheelers)in2023,despitetheirbatteriesbeingbetween5andmorethan40timessmallerthantheaverageelectriccarbattery.Thiscomparestoa3%shareinChinaandlessthan0.5%intheEuropeanUnionandtheUnitedStates.

ThisunderlinesthepopularityandimportanceofthismodeoftransportinEMDEs,wheresalesofelectric2/3-wheelersoutsideofChinareached2millionin2023,over90%ofwhichwereinIndiaandSoutheastAsia,comparedtoelectriccarsalesofunder400000.InIndiaandSoutheastAsia,halfofpassengerkilometrestravelledonroadin2023wereby2/3-wheelers.Electrifying2/3-wheelersinthesecountriesorregionscouldthereforeofferaneffectivewaytoelectrifyalargeproportionofroadtransportthatislessbattery-intensivecomparedtoelectriccars.While2/3-wheelersandcarsprovideasimilarservice,electrifyingtheentirefleetof2/3-wheelersinIndiaandSoutheastAsiawouldrequireonly30%ofthebatteriesneededtoelectrifytheircurrentcarfleets,ifusingtheiraverageregionalbatterysizesin2023.InChina,salesof2/3-wheelersandelectriccarsin2023reachedmorethan6millionand8million,respectively,and2/3-wheelers

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

accountedforover15%ofpassengerkilometrestravelledonroad.Thiscomparestolessthan5%intheEuropeanUnion,andlessthan1%intheUnitedStatesinthesameyear.

Outlookforbatterydemandandproduction

Demandforbatteriesgrowsstronglyinallscenarios

Batterydemandissettogrowfour-and-a-halftimesby2030comparedto2023basedoncurrentpolicysettings(asreflectedintheIEA

StatedPoliciesScenario

[STEPS]),andmorethanseventimesby2035.Ifcountriesreachtheirannouncedclimateandenergypledgesinfull,asintheIEA

AnnouncedPledgesScenario

(APS),demandissignificantlyhigher,multiplyingbyfivetimesin2030andninetimesin2035.Demandgrowsevenmoreinascenarioconsistentwiththeenergysectorreachingnetzeroemissionsby2050,asintheIEA

NetZeroEmissionsby

2050Scenario

(NZEScenario),up7timesin2030and12timesin2035.Toputthisinperspective,thereismorebatterydemandperweekin2035intheAPSthantherewasintheentireyearof2019.

TheshareofEMDEsotherthanChinainglobalbatterydemandalsoincreasesthisdecade,morethantriplingtoreach10%by2030intheSTEPS.TheroleoftheseeconomiesisevengreaterintheAPS,withtheirshareofglobaldemandgrowingalmostfivefoldby2030,andmorethansixfoldin2035.ThisismostlydrivenbytransportelectrificationstrategiesandpledgesthatboostEVbatterydemand.Forexample,IndiasignedtheCOP26

declaration

toreacha100%salesshareofzero-emissionlight-dutyvehiclesby2040,andIndonesiahassetan

ambition

toreachastockof2millionelectriccarsand13millionelectricmotorbikesby2030.

Theroll-outofadequateinfrastructure,suchaschargers,battery-swappingstations,andflexibleelectricitytransmissionanddistributiongridswillbecrucialtosupportgrowthinEVuptake.As2/3-wheelersareapopularmodeofmobilityinsomeEMDEs,alargeshareofthepopulationcouldaccesselectricmobilitywithhomecharging,thusavoidingtheneedformorecapital-intensivededicatedchargers.

2

Battery-swappingfor2/3-wheelerscouldalsobeaneffectivesolutionto

boost

electricmobilityinurbanareas.

2Thebatterysizeofelectric2/3-wheelersisoftensmallenoughtorechargeathomefromaregulardomesticsocketwithoutinstallationofadedicatedcharger.

IEA.CCBY4.0.

PAGE|8

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

IEA.CCBY4.0.

PAGE|9

BatterydemandbymodeandbyregionintheStatedPoliciesScenario,AnnouncedPledgesScenarioandNetZeroEmissionsby2050Scenario,2023-2035

BymodeByregion

TWh/year

10

8

6

4

2

0

10

8

6

4

2

0

STEPS

APS

2030

NZE

NZESTEPSAPS

2023

2035

STEPS

APS

2030

NZE

NZESTEPSAPS

2023

2035

LDVTwo/three-wheelerBusTruckBatterystorage

China

UnitedStatesOtherAEs

UEuropeanUnion

UEMDEs(exc.China)Global

IEA.CCBY4.0.

Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;NZE=NetZeroEmissionsby2050Scenario;LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.

Source:IEA(2024),

GlobalEVOutlook2024.

EffortstoboostdomesticdemandforEVsandbatteriesinEMDEsotherthanChinawouldalsobebeneficialtoattractinvestmentsindomesticmanufacturing.Long-termvisibilityandclarityonpolicy,togetherwithsupportfordomesticdemandandproduction,arecentraltogivingconfidencetoinvestorstocommittonewprojects.

Batteryproductionsettodiversify

In2023,Chinaaccountedforthelion’sshareoftheproductionofbatterycells–morethanthree-quarters–aswellasofcriticalbatterycomponentslikecathode(over80%ofproduction)andanode(over90%)activematerials.IntheSTEPS,batterycellproductiondiversifies,mainlyasaresultofinvestmentsinNorthAmericaandEurope,withproductionoutsideChinaaccountingforalmost40%ofthetotalby2035.IntheAPS,alongsidehigherglobaldemand,batterymanufacturingdiversifiesfurther,thankstomuchlargerproductionofbatteriesinEMDEsotherthanChina,particularlyinIndia,SoutheastAsiaandNorthAfrica,togetherwithgreaterEVandEVbatterymanufacturinginEurope.

TheincreaseinproductioninEMDEsotherthanChinaisenabledbyhigherdomesticandglobaldemand,combinedwithlowerproductioncostsandaccesstocriticalminerals,attractinglargermanufacturinginvestmentsintheseregions.Forexample,aboutUSD15billionin

investment

inbatteryandbatterycomponentproductionhasbeenannouncedinMoroccothankstoitslargephosphate

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

reserves,

3

lowlabourcostandpotentiallycheaprenewableelectricity,andfreetradeagreements(FTAs)withtheUnitedStatesandtheEuropeanUnion.IndonesiahassignedmorethanadozendealsworthoverUSD15billionfor

investments

inbatteriesandEVs,andrecently

inaugurated

itsfirstbatterycellproductionplant.Ifallannouncedinvestmentscometofruition,asreflectedintheAPS,IndonesiawouldbecomealargeEVandbatteryproducer.

Similarly,theproductionofcathodeandanodeactivematerialdiversifies,butthereisalargergapbetweentheSTEPSandAPScomparedtobatterycellproduction.IntheSTEPS,Chinaremainsbyfarthelargestproducer,withKoreaandSoutheastAsiatogetherrepresentingthesecondlargestsourceofproduction,accountingforover15%ofcathodeand5%ofanodeactivematerialproductionby2035.IntheAPS,greaterdiversificationisdrivenbylargerproductionintheEuropeanUnionandtheUnitedStates,butalso,importantly,bymuchlargerproductioninEMDEssuchasIndiaand,forcathodematerials,NorthAfrica,andCentralandSouthAmerica.

Batteries

Cathodes

Anodes

BatteryandselectedcomponentproductionbycountryorregionintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035

0.85TWh

6.2TWh

10.1TWh

0.85TWh

6.2TWh

10.1TWh

0.89TWh

6.5TWh

10.7TWh

2023

2035STEPS

2035APS

ChinaAdvancedeconomiesaEMDEs(exc.China)

IEA.CCBY4.0.

Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina.BatteryreferstobatterycellsandincludesEVandbatterystorage.Anegative(anode)topositive(cathode)electroderatioof1.05isassumedforthefinalcells,whichimplies5%moreanodecapacitythancathodecapacitypercell.

Source:BasedonIEA(2024),

EnergyTechnologyPerspectives2024.

3Phosphateisakeycomponentoflithiumironphosphate(LFP)batteries.

IEA.CCBY4.0.

PAGE|10

EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing

IEA.CCBY4.0.

PAGE|11

Manyofthe

minerals

neededtosatisfygrowingbatterydemandareextractedinEMDEs,suchaslithiuminSouthAmericancountries,nickelinIndonesia,andcobaltintheDemocraticRepublicofCongo.However,despitetheirexcellentmineralandrenewableresources,EMDEsotherthanChinaaccountforlessthan5%ofannouncedbatterymanufacturingcapacity.Thisunderlinesthesignificantindustrial

opportunity

forEMDEstoplayabiggerroleintheEVandbatterysupplychain.Ensuring

appropriate

environmental,socialandgovernance(ESG)standardswillbeanecessarypreconditionforsustainableindustrialdevelopmentprojects.

EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions

IEA.CCBY4.0.

PAGE|12

TheimpactofEVsandbatteriesonemissions

Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis

Batteryelectricvehiclesareoftendescribedaszero-emissionsvehicles,thoughthisisonlytrueintermsofemissionswhilebeingdriven.Thereareemissionsassociatedwithvehicleandbatterymanufacturing,andwithproducingtheelectricityusedtorechargethevehicle.Electricandinternalcombustionenginevehicles(ICEVs)shouldbecomparedthroughlifecycleanalysis,whichincludestheemissionsassociatedwiththeproductionofthevehicle(andbattery)aswellasthewell-towheelemissions(i.e.well-to-tankandtank-to-wheelemissions).Underthislens,EVsremainlargelybeneficialcomparedtoICEVs,buttheextentoftheenvironmentalbenefitsdependsonregionalconditionssuchastheelectricitymix,drivinghabits,vehiclesizeandeventualbiofuelshare.

Forexample,asaglobalaverage,undercurrentpolicies,thelifecycleemissionsofamedium-sizebatteryelectriccarareabouthalfofthoseofanequivalentICEVthatisrunningonoil-basedfuels,morethan40%lowerthanforanequivalenthybridelectricvehicle(HEV),andabout30%lowerthanforaplug-inhybridelectricvehicle(PHEV)over15yearsofoperation,oraround200000km.TheenvironmentalgainofEVsisalsosettoincreaseovertimethankstothedecarbonisationofelectricitygrids.AselectricitygenerationdecarbonisesmorequicklyintheAPS,thesegapsincreasebyafurther3percentagepoints,withBEVlifecycleemissionsbeinglessthanhalfthoseofanICEV,45%lessthananHEV,andaboutathirdlessthanaPHEV.Whencomparingvehiclespurchasedin2035,asaglobalaverage,anICEVproducestwo-and-a-halftimestheemissionsofabatteryelectriccarintheSTEPS,andmorethanthreetimesasmanyintheAPS,overthevehiclelifetime.

EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions

IEA.CCBY4.0.

PAGE|13

Comparisonofglobalaveragemedium-sizedcarlifecycleemissionsbypowertrainintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035

tCO2-eq/vehicle

50

40

30

20

10

0

ICEVHEVPHEVBEV

2023

ICEVHEVPHEVBEV

2035STEPS

ICEVHEVPHEVBEV

2035APS

CarproductionBatteryproductionTank-to-wheelWell-to-tankGriddecarbonisationimpact

IEA.CCBY4.0.

Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;ICEV=internalcombustionengine

vehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;BEV=batteryelectricvehicle.“Grid

decarbonisationimpact”referstotheeffectofelectricityemissionsintensityimprovementsoverthelifetimeofthevehicle

(STEPSusedforvehiclessoldin2023).Theyears2023and2035refertothefirstyearofuseofthevehicle.PHEV

assumesanaverageutilityfactorof40%i.e.40%ofkilometrestravelledinfullelectricmodeonaverage.Theimpactof

biofuel

blendingisnotconsideredinthisanalysis.Forfurtherdetailsontheassumptionsbehindthislifecycleanalysis,

pleaseseeAnnexBofthe

GlobalEVOutlook2024.

TheimpactofvaryingassumptionsisavailableintheIEA

EVLife

CycleAssessment

Calculator.

Source:IEA(2024),

GlobalEVOutlook2024.

Vehiclesizeplaysanimportantroleindetermininglifecycleemissions.Today,manyconsumersarechoosinglargervehiclesthanpreviously,promptedinpartbymodelavailability.Thoughsmallervehiclesareclearlypreferableintermsofbothproductionandoperationemissionsacrosspowertrains,thegreaterefficiencyofanelectricpowertrainmeanselectrificationmitigatesmuchofthenegativeimpactoflargervehicles.WhilesomelargeICESUVscanemitupto50%moreemissionsthanamedium-sizedICEcar,alargebatteryelectricSUVemitsonlyaround20%morethanamedium-sizedbatteryelectriccaroveritslifetime.ChoosingabatteryelectricSUVoveranICESUVrepresentsalifecycleemissionsavingofabout60%.Evencomparedtoamedium-sizeICEV,abatteryelectricSUVresultsin40%lowerlifecycleemissions.

ThelifecycleemissionsbenefitsofBEVsvarybyregion,depending,inparticular,onthelocalgridemissionsintensity,averageannualdrivingdistance,andfueleconomyofICEvehicles.Forexample,inChileandtheUnitedKingdom,thelifecycleemissionsofamedium-sizeBEVpurchasedin2023aremorethan60%lowerthanthoseofanICEV.IntheUnitedKingdomthegapbetweenICEVsandBEVsisprimarilydrivenbytherelativelylowandrapidlydecreasingemissionsintensityofelectricitygeneration.InChile,thegapbetweenICEVandBEVlifecycleemissionsisdrivenbyrelativelypoorICEVfuelefficiencyaswellastherapiddecarbonisationofthepowergrid,withtheaverageemissionintensityofpower

EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions

IEA.CCBY4.0.

PAGE|14

gridsfallingbyaround70%by2035intheSTEPS.WhileBEVscanoffersubstantialemissionreductionswhenreplacingICEVs,vehicleelectrificationisnottheonlystrategytoreduceroadtransportemissions;theuseofbiofuels,forexample,couldreducethelifecycleemissionsofICEVs.

Lifecycleemissionsofamedium-sizedcarbypowertrainrelativetoagasolineinternalcombustionenginecarbyregionintheStatedPoliciesScenario,2023

EmissionsrelativetoICEV

100%

80%

60%

40%

20%

0%

ChileChinaIndiaUnitedKingdom

ICEVHEVPHEVBEV

IEA.CCBY4.0.

Notes:ICEV=internalcombustionenginevehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;

BEV=batteryelectricvehicle.Theyear2023referstothefirstyearofuseofthev

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論