湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷含解析_第1頁
湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷含解析_第2頁
湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷含解析_第3頁
湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷含解析_第4頁
湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省雙峰縣一中2025屆高考壓軸卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度2.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.633.若(),,則()A.0或2 B.0 C.1或2 D.14.已知定義在上的偶函數(shù),當時,,設,則()A. B. C. D.5.已知等比數(shù)列滿足,,則()A. B. C. D.6.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.的展開式中的系數(shù)為()A. B. C. D.8.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.29.將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.10.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個11.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規(guī)律,若具有“穿墻術”,則()A.48 B.63 C.99 D.12012.若數(shù)列滿足且,則使的的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則14.在中,角的平分線交于,,,則面積的最大值為__________.15.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現(xiàn)從中摸出2個球(除顏色與編號外球沒有區(qū)別),則恰好同時包含字母,的概率為________.16.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓C的參數(shù)方程(為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.21.(12分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大小;(2)求的最大值.22.(10分)設函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分析:根據(jù)三角函數(shù)的圖象關系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結合和的關系是解決本題的關鍵.2、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.3、A【解析】

利用復數(shù)的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數(shù)模的運算,屬于基礎題.4、B【解析】

根據(jù)偶函數(shù)性質,可判斷關系;由時,,求得導函數(shù),并構造函數(shù),由進而判斷函數(shù)在時的單調性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質應用,由導函數(shù)性質判斷函數(shù)單調性的應用,根據(jù)單調性比較大小,屬于中檔題.5、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.6、C【解析】

根據(jù)直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.7、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數(shù)、整數(shù)冪的運算等有關方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.8、A【解析】

對函數(shù)求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導數(shù)與極值,考查了學生的運算求解能力,屬于基礎題.9、D【解析】

先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,

將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,

再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質是高考考查的熱點之一,經??疾槎x域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復習時要注意基礎知識的理解與落實.三角函數(shù)的性質由函數(shù)的解析式確定,在解答三角函數(shù)性質的綜合試題時要抓住函數(shù)解析式這個關鍵,在函數(shù)解析式較為復雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質求解.10、B【解析】

由題意,結合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關鍵,著重考查了推理與運算能力.11、C【解析】

觀察規(guī)律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發(fā)現(xiàn)總結各式規(guī)律是關鍵,屬于基礎題.12、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉化為切線問題是解題的關鍵.14、15【解析】

由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設,則由余弦定理得:即當且僅當,即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個球顏色不相同的情況數(shù),讓兩個球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.【點睛】本題主要考查了求事件概率,解題關鍵是掌握概率的基礎知識和組合數(shù)計算公式,考查了分析能力和計算能力,屬于基礎題.16、【解析】

根據(jù)向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關鍵在于恰當?shù)貙ο蛄窟M行轉換,便于計算解題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解析】

(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進行消參數(shù)運算,化為普通方程,再根據(jù)普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯(lián)立直線與圓的極坐標方程,解得;設,聯(lián)立直線與直線的極坐標方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標方程為.(2)設,則由解得,,得;設,則由解得,,得;所以【點睛】本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標方程,考查極坐標方程的求解運算,考查了學生的計算能力以及轉化能力,屬于基礎題.18、(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質量為A級的概率為,一件手工藝品質量為B級的概率為,一件手工藝品質量為C級的概率為,一件手工藝品質量為D級的概率為,所以X的分布列為X900600300100P則期望為.19、(1);(2).【解析】

(1)根據(jù)等比中項性質可構造方程求得,由等差數(shù)列通項公式可求得結果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結合等差和等比數(shù)列求和公式可求得結果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.【點睛】本題考查等差數(shù)列通項公式的求解、分組求和法求解數(shù)列的前項和的問題;關鍵是能夠根據(jù)通項公式證得數(shù)列為等比數(shù)列,進而采用分組求和法,結合等差和等比數(shù)列求和公式求得結果.20、(1);(2)證明見解析.【解析】

(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,,所以,,,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.21、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論