版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省荊荊襄宜四地七??荚嚶?lián)盟高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.2.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.3.是虛數(shù)單位,則()A.1 B.2 C. D.4.已知,則()A.2 B. C. D.35.已知四棱錐中,平面,底面是邊長(zhǎng)為2的正方形,,為的中點(diǎn),則異面直線(xiàn)與所成角的余弦值為()A. B. C. D.6.在棱長(zhǎng)為a的正方體中,E、F、M分別是AB、AD、的中點(diǎn),又P、Q分別在線(xiàn)段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時(shí),平面 D.當(dāng)m變化時(shí),直線(xiàn)l的位置不變7.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.8.設(shè)復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]10.2019年10月1日,中華人民共和國(guó)成立70周年,舉國(guó)同慶.將2,0,1,9,10這5個(gè)數(shù)字按照任意次序排成一行,拼成一個(gè)6位數(shù),則產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為A.96 B.84 C.120 D.36011.若平面向量,滿(mǎn)足,則的最大值為()A. B. C. D.12.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長(zhǎng)度的集合,則().A.,且 B.,且C.,且 D.,且二、填空題:本題共4小題,每小題5分,共20分。13.在二項(xiàng)式的展開(kāi)式中,的系數(shù)為_(kāi)_______.14.函數(shù)的極大值為_(kāi)_______.15.已知數(shù)列滿(mǎn)足,,若,則數(shù)列的前n項(xiàng)和______.16.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AEBD于E,延長(zhǎng)AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫(xiě)出結(jié)果,不要求過(guò)程).18.(12分)誠(chéng)信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);(Ⅱ)若定義水站誠(chéng)信度高于的為“高誠(chéng)信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠(chéng)信度”的概率;(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說(shuō)明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.19.(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請(qǐng)寫(xiě)出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說(shuō)明理由;(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.20.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線(xiàn):(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線(xiàn):.(1)求曲線(xiàn)的普通方程以及曲線(xiàn)的平面直角坐標(biāo)方程;(2)若曲線(xiàn)上恰好存在三個(gè)不同的點(diǎn)到曲線(xiàn)的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).22.(10分)已知點(diǎn)是拋物線(xiàn)的頂點(diǎn),,是上的兩個(gè)動(dòng)點(diǎn),且.(1)判斷點(diǎn)是否在直線(xiàn)上?說(shuō)明理由;(2)設(shè)點(diǎn)是△的外接圓的圓心,點(diǎn)到軸的距離為,點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.2、D【解析】
當(dāng)時(shí),函數(shù)周期為,畫(huà)出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故函數(shù)周期為,畫(huà)出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,確定函數(shù)周期畫(huà)出函數(shù)圖像是解題的關(guān)鍵.3、C【解析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.4、A【解析】
利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點(diǎn)睛】本題考查了函數(shù)值的求法,考查對(duì)數(shù)的運(yùn)算和對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.5、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長(zhǎng)為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線(xiàn)與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.6、C【解析】
根據(jù)線(xiàn)面平行與垂直的判定與性質(zhì)逐個(gè)分析即可.【詳解】因?yàn)?所以,因?yàn)镋、F分別是AB、AD的中點(diǎn),所以,所以,因?yàn)槊婷?所以.選項(xiàng)A、D顯然成立;因?yàn)?平面,所以平面,因?yàn)槠矫?所以,所以B項(xiàng)成立;易知平面MEF,平面MPQ,而直線(xiàn)與不垂直,所以C項(xiàng)不成立.故選:C【點(diǎn)睛】本題考查直線(xiàn)與平面的位置關(guān)系.屬于中檔題.7、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類(lèi)問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.8、D【解析】
先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.9、B【解析】
先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開(kāi)頭的排列數(shù)共個(gè),其中含有2個(gè)10的排列數(shù)共個(gè),所以產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為.故選B.11、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.12、D【解析】
首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長(zhǎng)度,進(jìn)一步求出個(gè)各棱長(zhǎng).【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】
直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】二項(xiàng)式的展開(kāi)式通項(xiàng)為:,取,則的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.14、【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時(shí),;當(dāng)時(shí),.所以當(dāng)時(shí),函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.15、【解析】
,求得的通項(xiàng),進(jìn)而求得,得通項(xiàng)公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點(diǎn)睛】本題考查求等差數(shù)列數(shù)列通項(xiàng),等比數(shù)列求和,熟記等差等比性質(zhì),熟練運(yùn)算是關(guān)鍵,是基礎(chǔ)題.16、【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ谏系闹涤驗(yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)證明見(jiàn)解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交線(xiàn)為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線(xiàn)為x軸,y軸,z軸,建立空間直角坐標(biāo)系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫(xiě)出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線(xiàn)為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線(xiàn)為x軸,y軸,z軸,
建立空間直角坐標(biāo)系E-xyz,設(shè)AB=BD=DC=AD=2,
則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個(gè)法向量為,設(shè)平面ADC的一個(gè)法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.
(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點(diǎn)睛】本題考查線(xiàn)面垂直的證明、幾何體體積計(jì)算、二面角有關(guān)的立體幾何綜合題,屬于中等題.18、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動(dòng)效果均好,理由詳見(jiàn)解析.【解析】
(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠(chéng)信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周,則有兩周為“高誠(chéng)信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計(jì)算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠(chéng)信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠(chéng)信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周均為“高誠(chéng)信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計(jì)算公式可得,.(Ⅲ)兩次活動(dòng)效果均好.理由:活動(dòng)舉辦后,“水站誠(chéng)信度'由和看出,后繼一周都有提升.【點(diǎn)睛】本題考查平均數(shù)公式和古典概型概率計(jì)算公式;考查運(yùn)算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、??碱}型.19、(Ⅰ)答案見(jiàn)解析;(Ⅱ)不存在,理由見(jiàn)解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿(mǎn)足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過(guò)分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2……,以此類(lèi)推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)?,,所以,?..,,,,...,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個(gè)數(shù),由③知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對(duì)數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類(lèi)推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿(mǎn)足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點(diǎn)睛】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.20、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(1),;(2),,.【解析】
(1)把曲線(xiàn)的參數(shù)方程與曲線(xiàn)的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個(gè)點(diǎn)的極徑與極角.【詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬現(xiàn)實(shí)技術(shù)在腦癱患兒家庭教育中的應(yīng)用-洞察分析
- 文化差異對(duì)跨國(guó)公司客戶(hù)關(guān)系管理的影響-洞察分析
- 威脅狩獵與追蹤-洞察分析
- 云計(jì)算在商務(wù)服務(wù)中的創(chuàng)新應(yīng)用-洞察分析
- 提升柑橘生產(chǎn)效率研究-洞察分析
- 虛擬化天線(xiàn)技術(shù)研究-洞察分析
- 《服裝公司工作總結(jié)》課件
- 人工智能在工業(yè)互聯(lián)網(wǎng)中的應(yīng)用與創(chuàng)新
- 內(nèi)容創(chuàng)作者如何應(yīng)對(duì)信息過(guò)載風(fēng)險(xiǎn)
- 利用電影資源輔助提升學(xué)生的文學(xué)理解能力
- 《建筑電氣工程施工質(zhì)量驗(yàn)收規(guī)范》修編內(nèi)容
- 《借貸記賬法》教學(xué)設(shè)計(jì)
- 【試題】人教版二年級(jí)下數(shù)學(xué)暑假每日一練
- 衛(wèi)生院關(guān)于開(kāi)展?jié)M意度調(diào)查工作的實(shí)施方案
- YY/T 0916.1-2021醫(yī)用液體和氣體用小孔徑連接件第1部分:通用要求
- YY/T 0698.4-2009最終滅菌醫(yī)療器械包裝材料第4部分:紙袋要求和試驗(yàn)方法
- 醫(yī)務(wù)科工作思路(計(jì)劃)6篇
- GA 614-2006警用防割手套
- 阿爾茨海默病的免疫課件
- BIM技術(shù)咨詢(xún)管理服務(wù)招標(biāo)投標(biāo)文件技術(shù)標(biāo)
- 送達(dá)地址確認(rèn)書(shū)(完整版)
評(píng)論
0/150
提交評(píng)論