版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
11設(shè)X為一個非負(fù)隨機(jī)變量,其數(shù)學(xué)期望為E(X(,則對任意ε>0,均有P(X≥ε(≤,望間的關(guān)系.設(shè)X的分布列為P(X=xi(=pi,i=1,2,?,n,其中pi=1,則對任意ε>0,Pxipi≤xipi=其中符號表示對所有滿足xi≥ε的指標(biāo)i所對應(yīng)的Ai求和.的影響,與之前的n無關(guān).ii,所以,P(B2(=P(A1B2(+P(B1B2(=P(A1(P(B2|A1(+P(B1(P(B2|B1(P(Ai+1(=P(AiAi+1(+P(BiAi+1(=P(Ai(P(Ai+1|Ai(+P(Bi(P(Ai+1|Bi(,即pi+1=0.6pi+(1-0.8(×(1-pi(=0.4pi+0.2,構(gòu)造等比數(shù)列{pi+λ{(lán),設(shè)pi+1+λ=(pi+λ(,解得則pi+1-(pi-1-所以當(dāng)n∈N*時,E(Y(=p1+p2+?+pn= A.p1=B.P(X1=2(=C.數(shù)列是等比數(shù)列D.Xn的數(shù)學(xué)期望E(Xn(=122利用pn=pn-1+P(Xn-1=0(+P(Xn-1=2(推出pn-=-pn-1-,可判斷C;利用P(Xn=0(=P(Xn=2(=可判斷D.當(dāng)n≥2(n∈N?(時,pn=pn-1+P(Xn-1=0(+P(Xn-1=2(=pn-1+[P(Xn-1=0(+P(Xn-1=2([=pn-1+(1-pn-1(=-pn-1+整理得pn-=-pn-1-,p1-=-=-,P(Xn=1(=pn,P(Xn=0(=×pn-1+P(Xn-1=0(=pn-1+P(Xn-1=0(,P(Xn=2(=×pn-1+P(Xn-1=2(=pn-1+P(Xn-1=2(,因P(X1=0(=P(X1=2(,所以P(Xn=0(=P(Xn=2(=,E(Xn(=0×P(Xn=0(+1×P(Xn=故D正確, n的數(shù)學(xué)期望E(Xn(為定值.2=n=-×(-n-1+n+pn-1=(2qn-1+pn-1-1(,結(jié)合2q1+p1-1=0,由此可得qn=、分布列以及數(shù)33n由題意知p1==,q1==,所以p2=p1+q1+(1-p1-q1(=.n=pn-1+qn-1+(1-pn-1-qn-1(=-pn-1+,所以pn-=-pn-1-.所以pn-=-×(-n-1,pn=-×(-n-1+.n=pn-1+qn-1=pn-1+qn-1①,1-qn-pn=pn-1+(1-qn-1-pn-1(=pn-1+(1-qn-1-pn-1(②.所以①-②,得2qn+pn-1=(2qn-1+pn-1-1(.又因為2q1+p1-1=0,所以2qn+pn-1=0.所以qn=.所以Xn的概率分布列為:Xn012p1-pn-pn1-pn2所以Xn的數(shù)學(xué)期望E(Xn(為定值1. 44=,a1=,b2=,a2=(3)E(Xn(=+n-1n+1=1-bn-an,an+1=bn+an,2=b1+b1+a1=b1+a1=×+×=,a2=b1+a1=×+ -an-bn,nnnn55nnnnn-bn,n+1=bn+bn+an+1-bn-an=1-bn-an.an+1=bn+an,n+1+bn+1-=2n+n(+1-n-n-=n+n-=1n+bn-2an+bn-2an+bn-6,+b1-=,n+bn-=n-1,所以2an+bn=+n-1,E(Xn(=0×(1-an-bn(+1×bn+2an=bn+2an=+n-1.ξ01P1-pPEξ=p,Dξ=p(1-p(.66則Pn+1=0.6Pn+0.2(1-Pn)=0.4Pn+0.2,i-1,由題意得甲第i次投籃次數(shù)Yi服從兩點分布,且P(Yi=1)=1-P(Yi=0)=Pi,i-1+, 圖.77人的概率.解得m=0.012.ξ0123P 8 88表.992442k=1(3)Dξ1<Dξ3<Dξ2所以P(A(估計為=;99P(X=2(=P(ABC-+AB-C+A-BC(=P(A(P(B(P(C-(+P(A(P(B-(P(C(+P(A-(P(B(P(C(=;P(X=3(=P(ABC(=P(A(P(B(P(C(=,則X的分布列為:P P (3)Dξ1<Dξ3<Dξ2 =;==;==;所以Dξ1<Dξ3<Dξ2. 布列.列.X01P 37 47P(Y=0)==,P(Y=1)==.Y01P 7 67若在一次實驗中事件發(fā)生的概率為p(0<p<1(,則在n次獨立重復(fù)實驗中,在第k次首次發(fā)生的概率為p(k(=(1-p(k-1p,k=1,2,?,Eξ=。?,k,其中k為M與n的較小者,P(ξ=m(=服從參數(shù)為N,M,n的超幾何分<23.4≥23.4P(K2≥k0(則P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為:X012P <23.4≥23.466K2===6.4>3.841,(3)s<s<sP(X=0(=C=5P(X=1(=CC=15P所以X的分布列為:X012P x1==0.4,x2==0.3,x3==0.2,x4==0.1,=0.25,所以s==.y1=80=8,y2=80=4,y3=80=4,y4=y1+y2+y3+y41=所以s==.對應(yīng)的平均數(shù)為x1+x2+x3+x4+y1+y2+y3+y4=所以s= =(0.4-0.25(2+(0.3-0.25(2+(0.2-0.25(2+(0.1-0.25(2+-2+-2+-2+-2 =8 所以s<s<s. P(K2≥k0(2P(X=0(=CC=4=1P(X=1(=CC=12=3可得X的分布列為X012P 5 35 5 *3次.E(X(;k則P(X=0(==,P(X=1(==,P(X=2(==,P(X=3(==.X的分布列為X0123P1 數(shù)學(xué)期望E(X(=0×kP(A1(=1-=,P(A2(=++=,P(A3(=+若在一次實驗中事件發(fā)生的概率為p(0<p<1(,則在n次獨立重復(fù)實驗中恰好發(fā)生k次概率p(ξ=k(=Cpk(1-p(n-k(k=0,1,2,?,n(,稱ξ服從參數(shù)為n,p的二項分布,記作ξ~B(n,p(,Eξ=np,Di=所以X~B(4,0.25(,所以P(X=0(=(,P(X=1(=C,P(X=4(=C×4=,所以X的分布列為:X01234P 所以E(X(=4×=1;所以P(N|M(= ≤x2≤?≤x20,經(jīng)計算2=s=443.6.故X的分布列為:X01234P 則E(X)=4×=. (2)首先算出P(B(進(jìn)一步結(jié)合二項分布的概2+C22=,P(X=4(=2×2=,所以X的分布列為X01234P 數(shù)為X,X=k(k=0,1,?,n)的概率記為P(X=k(,則n為何值時,P(X=6(的值最大?則X~B(n,,可得P(X=6(=C6(1-n-6=C6n-6,令>1,解得n<7,可知當(dāng)n≤6,可得an+1>a令<1,解得n>7,可知當(dāng)n≥8,可得an+1>an;數(shù),且σ>0,-∞<μ<+∞)。(3)ξ~N(μ,σ2(,則ξ在(μ-σ,μ+σ(,(μ-2σ,μ+2σ(,(μ-3σ,μ+3σ(上取值的概率分別為68.3%,,則P(μ-σ<Z<μ+σ)≈0.6827,P(μ-2σ<Z<μ+2σ)≈0.9545,P(μ-3σ<Z<μ=15,則X的分布列為:X012P5 2=362故P(Z≥91)=P(Z≥μ+2σ)=[1-P(μ-2σ<Z<μ+2σ)]≈0.02275, 附:若X~N(μ,σ2((σ>0),則P(μ-σ<X<μ+σ(≈0.683,P(μ-2σ<X<μ+2σ(≈0.954,P(μ-3σ<X<μ+3σ(≈0.997.所以P(X≥72(≈=0.1585.P(Y=2(=×(1-2=;(1-=;P(Y=8(=(1-×2=;P(Y=10(=×2=. 附:若X~N(μ,σ2(,則P(μ-σ<X≤μ+σ(=0.6827,P(μ-2σ<X≤μ+2σ(=0.9545,P(μ-3σ<X≤μ+3σ(=0.9973.∴P(ξ=0(=P(ξ=4(=4=,P(ξ=1(=C1-3=,P(ξ=2(=C2(1-2=,P(ξ=3(=C3(1-=,ξ01234P 38 4 41∴P(Y≥250(=P(Y≥231+19(=×(1-P(μ-σ<Y≤μ+σ((連續(xù)型隨機(jī)變量X,定義其累積分布函數(shù)為F(x)=P(X≤x).已知某系統(tǒng)由一個電源和并聯(lián)的A,B,C間工作相互獨立.t,t,1>t2>0,證明:P(T>t1|T>t2)=P(T>t1-t2);t<0t≥0.【分析】(1)根據(jù)正態(tài)分布的對稱性即可結(jié)合F(x)=P(X≤x)的定義求解,【詳解】(1)由題設(shè)得P(38<X<42)=0.6827,P(36<X<4所以F(44)-F(38)=P(X≤44)-P(X≤38)=P(40≤X≤44)+P(38≤X≤40)PT>t1|T>t2)=======4t2-t1,P(T>t1-t2)=1-P(T≤t1-t2)=1-G(t1-t2)=4t-t,所以P(T>t1|T>t2)=P(T>t1-t2).(ⅱ)由(ⅰ)得P(T>n+1|T>n)=P(T>1)=1-P(T≤1)=1-G(1)=,所以第n+1天元件B,C正常工作的概率均為.束.∴進(jìn)行3局比賽決出冠亞軍的概率為P=+=故X的分布列為:X12P 23 3 X234P 9 49 49期望EX=所以結(jié)束時恰好打了6局的概率為P=P1+P2=+=.則P(X=2(=2=,P(X=3(=3+C2×=,P(X=4(=C×3×+C×2=,所以X的分布列如下:X234P 9 49 49 P(X=4)=4+4=;P(X=5)=C4×+C4×=; 隨機(jī)變量X的分布列為:X4567P 8 45 P(X=1(=1-=,P(X=2(=×(1-=,P(X=3(=×=,P123X 25 相互獨立.P(A(=α=,P(B(=β=,P(C(=γ=,所以P(N)=P(ABAA)+P(BAAA)+P(ACCA)+P(CACA)+P(CCAA)4+32=.P(X=2)=α2+β2,所以X的分布列為X245P2+β22+β2)所以X的期望E(X)=2(α2+β2)+8αβ(α2+β2)+20α2β2學(xué)員贏得比賽的概率與比賽一開始甲學(xué)員贏得比賽的概率相同.=P(A)P(A)+P(A)P(B)P(M)+P(B)P(A)P(M)=α2+αβP(M)+βαP(M)=α2+2αβP(M)(α+β)2-2αβα2+2αβ+β2-2αβα2+β2(α+β)2-2αβα2+2αβ+β2-2αβα2+β2. ×=,P(X3=3(=1--= X3123P 3 7所以=k(1≤k≤n-1,k∈N*(時,P(=k(=((k-1×;當(dāng)=n時P(=n(=((n-1,故YYn123?n-1nP 3 ?n-2n-1+nn-1(n∈N*,n≥2).E(Yn+1(-E(Yn(=nn-1×+(n+1(n-nn-1=n>0,故E(Yn(單調(diào)遞增;由上得E(Y2(=,故E(Yn(=E(Y2(+[E(Y3(-E(Y2([+[E(Y4(-E(Y3([+?+[E(Yn(-E(Yn-1([,∴E(Yn(=+2+3+?+n-1=+=3-2×n-1<3,故E(Y2(<E(Y3(<E(Y4(<E(Y5(<?<E(Yn(<3. 所以P=P1+P2=160+40則P(X=2(=2=,P(X=3(=C+C3=+=,P(X=4(=C×2×=,所以隨機(jī)變量X的分布列為:X234P 49 3 29 金的占比.P(Y=4)=4×2=P(Y=5)=C5×2=P(Y=6)=C6×2=P(Y=7)=C7×2=Y4567P 8 4 5P(X=3)=(1-p)3;P(X=4)=C(1-p)3?p設(shè)乙贏得全部獎金為事件A,則P(A)=P(X=3)+P(X=4)=(1-p)3(1+3p)max=f==0.0272<0.05 =.所以隨機(jī)變量X的分布列為:X2345P 49 則P(A(=,P(B(=,P(C(=,P(ξ=1(=P(AB)=P(A)P(B)=×=,=P(A)P(C)+P(A)P(B)P(C)+P(A)P(C)P(B)=×+ ξ123P 3 38 決策.比賽四局結(jié)束,所以P(X=4(=1-P(X=2(-P(X=3(=.所以X的分布列為X234P 49 3 29事件D.=.=.所以P(D(=P(AD(+P(BD(+P(CD(=P(D∣A(P(A(+P(D∣B(P(B(+P(D∣C(P(C(==P(D∣B(>P(D∣C(, 所以三人總積分X的分布列為X468P555為p3.故P(A(=p3(1-p1(+p3p1(1-p2(p3+(1-p3(p2(1-p1(p3;同理可得P(B(=(1-p1(p3+(1-p1((1-p3(p2(1-p1(+p1(1-p2(p3(1-p1(;P(C(=p2(1-p1(p3+(1-p2(p3(1-p1(=p3(1-p1(;顯然P(B(-P(C(=(1-p1((1-p3(p2(1-p1(+p1(1-p2(p3(1-p1(>0,故P(B(>P(C(,P(A(-P(B(=[p3p1(1-p2(p3-p1(1-p2(p3(1-p1([+[(1-p3(p2(1-p1(p3-(1-p1((1-p3(p2(1-p1([=(p1+p3-1(p1(1-p2(p3+(p1+p3-1((1-p3(p2(1-p1(=(p1+p3-1([p1(1-p2(p3+(1-p3(p2(1-p1([,由于p1+p3>1,故P(A(-P(B(=(p1+p3-1([p1(1-p2(p3+(1-p3(p2(1-p1([>0,所以P(A(>P(B(; 概率為:P1=1-1-=;(1-1-1-=,所以丙獲得冠軍的概率P=+=.所以甲獲得冠軍的概率P=+=. iiiD=B1B2A3A4A5+B1C2A3A4A5+A1A2B3B4A5+A1A2B3C4A5+A1C2C3A4A5+A1C2B3A4A5,所以P(D(=+++++=.;(2)證明見解析,Pn=-n-1+(3)E(Y)=1-(-n+n-1n-1+i-1+ -qi((sinqi+1-sinqi(<2=n=+-n-1(3)證明見解析2=3=p2+(1-p2(=;n=pn-1+(1-pn-1(,∴pn=-pn-1+,即pn-=-pn-1-,顯然qn>qn+1,則h(qn(>h(qn+1(,∴qn-sinqn>qn+1-sinqn+1,則=qn-qn+1>sinqn-sinqn+1,即(qn+1-qn((sinqn+1-sinqn(=(qn-qn+1((sinqn-sinqn+1(<, P(X=1(==;P(X=2(==;P(X=3(==.所以隨機(jī)變量X的分布列為:X123P3 351則有P1=0,P2==,P3==.An+1=A?An+1+An?An+1所以Pn+1=P(A?An+1+An?An+1(=P(A?An+1(+P(An?An+1(=P(A(?P(An+1∣A(+P(An(?P(An+1∣An(=(1-Pn(?+Pn?0=(1-Pn(.即Pn+1=-Pn+.所以Pn+1-=-Pn-,且P1-=-. =A×3=.P(X=1(=3×3=,P(X=3(=A×3=,P(X=2(=1-P(X=1(-P(X=3(=,X的分布列如下:X123P 9 23 29所以,當(dāng)n≥4時,Pn=Pn-1+(1-Pn-1-3××=+Pn-1-所以Pn=+Pn-1- n-1. 本結(jié)果為陽性的概率是p(0<p<1).比較E(X)與E(Y)的大小.所以P(A(=Cp(1-p)2p=3p2(1-p)2.所以P(Y=1(=(1-p)20,P(Y=21(=1-(1-p)20,所以E(Y(=(1-p)20+21[1-(1-p)20[=21-20(1-p)20.所以E(Y(-E(X(=1-20(1-p)20,令1-20(1-p)20>0,解得p>1-20.所以當(dāng)p>1-20時,E(Y(>E(X(;當(dāng)p=1-20時,E(Y(=E(X(;當(dāng)0<p<1-20時,E(Y(<E(X(. (2)已知每個人患該疾病的概率為p(0<p<1(.(2)(i)E(X(=(1-p(n+(n+1([1-(1-p(n[;(ii)答案見解析②根據(jù)題意可得:P==;所以E(X(=(1-p(n+(n+1([1-(1-p(n[;方案二:檢查的次數(shù)期望為E(X(=(1-p(5+6[1-(1-p(5[,E(X(-5=[6-5(1-p(5[-5=1-5(1-p(5,記g(p(=1-5(1-p(5,因為0<1-p<1,所以g(p(單調(diào)遞當(dāng)1-<p<1時,g(p(>0, 1-=.P(X=1)=(、p)4=p2;P(X=5)=1-p2,X15Pp21-p2則E(X)=5-4p2,P(Y=2)=p2;P(Y=4)=Cp(1-p)=2p(1-p);P(Y=6)=(1-p)2;Y246Pp2(1-p(2則E(Y)=2p2+4(2p-2p2)+6(1-p)2=6-4p,E(Y)-E(X)=6-4p-(5-4p2)=4p2-4p+1, *陽性的概率為p(0<p<1(.3=0.2048ξ16P5-0.85(=4.35.②當(dāng)采用混合檢驗的方案時E(ξ(=1×(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k,即k+1-k(1-p(k<k,化簡得0<p<1-k,所以當(dāng)P滿足0<p<1-k,用混合檢驗的方案能減少檢驗次數(shù). (1)若E(ξ1(=E(ξ2(,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k(;1,E(ξ2(=k+1-k(1-p(k,根=E(ξ2(解得p=1-(即可得解;(ii)求出p,根據(jù)E(ξ1(>E(ξ2(得到lnk>k,再構(gòu)造函數(shù)f(x(=lnx-利用導(dǎo)數(shù)可求得結(jié)∴P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k.∴E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k.若E(ξ1(=E(ξ2(,則k=k+1-k(1-p(k,N?,且k≥2).-n-11=1k-1k②假設(shè)對任意的n=k時,xk=e3-+1+(e--e-+k+1-1=0,所以(e-k+1-1((e-+k+1+1(=0.∴xk+1=e或xk+1=-e-.kn-1所以==en{為等比數(shù)列.>E(ξ2(,3-xn(n+1n+1+1=nn+1,vn+1n+1的通項公式.n+1=p,vn+1=2pnqn,wn+1=q,=+(n-1(,其中q1=-==,+n,qn=,于是wn+1=q *-.(ii)依題可知,p=1-e-(ξ1(-E(ξ2(=k(1-p(k-1=ke--1>0,ke--1>0→lnk->0,構(gòu)造函數(shù)f(k(=lnk-(k≥2),由;當(dāng)進(jìn)行混合檢驗時,P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k則E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k“E(ξ1(=E(ξ2(,:k=k+1-k(1-p(k則(1-p(k=,即p=1-(-k-1②假設(shè)當(dāng)n=k(k≥1,k∈N*(時,xk=e3+....+-2(k-1)-e3--1+....+=a1+a2+-2(k-1)-e3--1+....+(=e-+1-ek+1+e=0:xk+1=e或xk+1=-en-1n=e3對一切n∈N*都成立.即{xn{為等比數(shù)列.-E(ξ2(=k(1-p(k-1=ke--1>0:->ln→lnk->0令f(k(=lnk-(k≥2),則f’(k(=-=∵f(9(=ln9-<0,f(8(=ln8->0則k的最大值為8. 是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p(0<p<1(N*(n≥2(,都有e-E(ξ2(.結(jié)合E(ξ1(=E(ξ2(,化簡即可關(guān)于k的函數(shù)關(guān)系式p=f(k(;得p=1-=1-,E(ξ1(>E(ξ2(,化簡可得lnk>k,構(gòu)造函數(shù)f(x(=lnx-x(x>0(,求得∴P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k.∴E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k.若E(ξ1(=E(ξ2(,則k=k+1-k(1-p(k,(1-p(k=,∴1-p=k,∴p=k.:p關(guān)于k的函數(shù)關(guān)系式為f(k(=1-(“x1=1,:下面證明對任意的正整數(shù)n,xn=e.k-1k-=,:e-:e-.x+1+(e--e-+k+1-1=0,(e-k+1-1((e-+k+1+1(=0.:xk+1=e或xk+1=-e-kn-1:xk+1=e3成立.:由①②可知,{xn{為等比數(shù)列,xn=e3.:k>k+1-k(1-p(k,得<(1-p(k=((k,:lnk>設(shè)f(x(=lnx-x(x>0(,f/(x(=,:當(dāng)x≥3時,f/(x(<0,即f(x(在[3,+∞(上單調(diào)減.:ln5<.:k的最大值為4. P(Xt+1|...,Xt-2,Xt-1,Xt(=P(Xt+1|Xt(.為A(A∈N*,A<B(,賭博過程如下圖的數(shù)軸所示.(1)請直接寫出P(0(與P(B(的數(shù)值.計含義.-P(n-1(=P(n+1(-P(n(,即可即P(n)=P(n-1)+P(n+1),所以P(n(-P(n-1(=P(n+1(-P(n(,所以{P(n({是一個等差數(shù)列,設(shè)P(n(-P(n-1(=d,則P(n-1(-P(n-2(=d,?,P(1(-P(0(=d,累加得P(n(-P(0)=nd,故P(B(-P(0)=Bd,得d=-,-P(0(=nd得P(A(-P(0(=Ad,即P(A)=1-,當(dāng)B=200時,P(A(=50%, 4864P(x2≥m)m2==≈10.667>6.635P(X=0)=C04=;P(X=1)=C13=P(X=2)=C22=P(X=3)=C31=P(X=4)=C40=.X的分布列為:X01234P E(X)=4×= P(X=0(=CC7=136P(X=1(=CC7=51PX012P 3 E(X(.(a+b((c+d((a+c((b+d(2=n(ad-bc)2,n(a+b((c+d((a+c((b+d(αxα則χ2=≈9.524>3.841=x0.05,P(X=0(=3=,P(X=1(=C2=,P(X=2(=C2=,P(X=3(=C3=,所以隨機(jī)變量X的分布列為:X0123P ,則P(μ-σ<Y≤μ+σ(=0.6826,P(μ-2σ<Y≤μ+2σ(=0.9544)所以P(Y>90(=[1-P(80-10<Y≤80+10([
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度國際貿(mào)易政策與WTO規(guī)則第四章案例分析合同3篇
- 2024年高校自主招生合同模板3篇
- 國際市場分銷合同(2篇)
- 二零二五年度市政道路建設(shè)款項支付擔(dān)保協(xié)議范本3篇
- 2024年解除股權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度新能源儲能設(shè)備加工與安裝合同3篇
- 二零二五年度教育培訓(xùn)機(jī)構(gòu)共享用工協(xié)議書范本3篇
- 二零二五年度古裝劇劇本編寫與編劇服務(wù)全面協(xié)議2篇
- 基礎(chǔ)會計 第四章 借貸記賬法 習(xí)題及答案 中國人大出版
- 二零二五年度教育培訓(xùn)項目合作及教材出版合同2篇
- GB/T 1335.2-2008服裝號型女子
- GB 31247-2014電纜及光纜燃燒性能分級
- DCC20網(wǎng)絡(luò)型監(jiān)視與報警
- 項目實施路徑課件
- 《簡單教數(shù)學(xué)》讀書心得課件
- 《室速的診斷及治療》課件
- 畢業(yè)設(shè)計(論文)-基于AT89C51單片機(jī)的溫度控制系統(tǒng)設(shè)計
- 士卓曼種植系統(tǒng)外科植入流程課件
- 二手新能源汽車充電安全承諾書
- 二年級下冊《一起長大的玩具》導(dǎo)讀教學(xué)-一場別樣的童年之旅
- 全國水資源綜合規(guī)劃技術(shù)細(xì)則(水利部文件)
評論
0/150
提交評論