版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市豐城九中2025屆高三二診模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,點C在AB上,且,設,則的值為()A. B. C. D.2.在中所對的邊分別是,若,則()A.37 B.13 C. D.3.若為純虛數(shù),則z=()A. B.6i C. D.204.在復平面內(nèi),復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或96.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或7.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.8.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.329.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設球的半徑分別為,則()A. B. C. D.10.已知過點且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.311.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種12.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿約束條件,則的最大值為___________.14.的展開式中的常數(shù)項為_______.15.函數(shù)在區(qū)間(-∞,1)上遞增,則實數(shù)a的取值范圍是____16.數(shù)據(jù)的標準差為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值18.(12分)某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.19.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經(jīng)常閱讀與居民居住地有關?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.21.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.22.(10分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.2、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.3、C【解析】
根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復數(shù)的概念與運算,屬基礎題.4、D【解析】
將復數(shù)化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內(nèi)點的對應,難度容易.5、C【解析】
由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎題.6、C【解析】
由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學思想.7、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.8、A【解析】
計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點睛】本題考查了集合的真子集個數(shù),意在考查學生的計算能力.9、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結合思想,轉化思想,直觀想象與數(shù)學運算的核心素養(yǎng)10、C【解析】
設切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導數(shù)的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【點睛】本題主要考查了利用導數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數(shù)的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.11、D【解析】
采取分類計數(shù)和分步計數(shù)相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題12、D【解析】
舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.14、【解析】
寫出展開式的通項公式,考慮當?shù)闹笖?shù)為零時,對應的值即為常數(shù)項.【詳解】的展開式通項公式為:,令,所以,所以常數(shù)項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數(shù)項對應的取值.15、【解析】
根據(jù)復合函數(shù)單調(diào)性同增異減,結合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復合函數(shù)的單調(diào)性可得解得.故答案為:【點睛】本小題主要考查根據(jù)對數(shù)型復合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎題.16、【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.18、(1)0.0294.(2)應選生產(chǎn)線②.見解析【解析】
(1)由題意轉化條件得A工序不出現(xiàn)故障B工序出現(xiàn)故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產(chǎn)線增加的生產(chǎn)成本的期望,進而求出兩個生產(chǎn)線的生產(chǎn)成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產(chǎn)線①,生產(chǎn)成本恰好為18萬元,即A工序不出現(xiàn)故障B工序出現(xiàn)故障,故所求的概率為.(2)若選擇生產(chǎn)線①,設增加的生產(chǎn)成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產(chǎn)線①的生產(chǎn)成本期望值為(萬元).若選生產(chǎn)線②,設增加的生產(chǎn)成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產(chǎn)線②的生產(chǎn)成本期望值為(萬元),故應選生產(chǎn)線②.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應用,屬于中檔題.19、(1)見解析,有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)【解析】
(1)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數(shù)學期望的計算,考查運算求解能力,屬于基礎題.20、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設到平面的距離為,由,即,即,可得,設直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學生的轉化思想和計算能力,屬于中檔題.21、(1);(2)10【解析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學生鑒定評語(集合15篇)
- 信達商社2025年度策略報告:景區(qū)板塊有望迎來新一輪產(chǎn)能擴張政策利好+線下零售調(diào)改帶來行業(yè)性變革機遇
- 2025年精密陶瓷劈刀項目建議書
- 離職員工解除勞動合同協(xié)議
- 借用資質(zhì)承諾書:供應鏈穩(wěn)定性
- 紡織行業(yè)技能提升培訓
- 時尚模特經(jīng)紀人聘用協(xié)議
- 醫(yī)院周邊減速帶建設項目協(xié)議
- 農(nóng)藥安全使用國家標準管理辦法
- 防水工程師崗位協(xié)議樣本
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院院長工作職責
- 2024年小學體育新課標測評考試題庫(含答案)
- 干式變壓器安全操作規(guī)程模版(3篇)
- 河南省南陽市2024-2025學年七年級上學期多校第三次月考生物試題
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應對措施
- 退休人員返聘勞動合同三篇
- 檔案數(shù)字化加工服務方案
- 食品工藝學名詞解釋、簡答題、填空題等
- 中醫(yī)腦癱課件教學課件
- 有關環(huán)衛(wèi)工人安全教育
- 2024年新聞宣傳新聞采編專業(yè)及理論知識考試題附含答案
評論
0/150
提交評論