2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆福建省福州市八縣一中聯(lián)考高三第二次聯(lián)考數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.3.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長度 B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度4.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件6.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.7.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.8.已知,,則等于().A. B. C. D.9.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.10.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.12.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.我國古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個(gè)四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).14.已知中,點(diǎn)是邊的中點(diǎn),的面積為,則線段的取值范圍是__________.15.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_____.16.若x,y滿足,且y≥?1,則3x+y的最大值_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,為的中點(diǎn),為的中點(diǎn),為線段上一點(diǎn),且滿足,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.20.(12分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點(diǎn)A,B,求線段的長.21.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.22.(10分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:加工1個(gè)零件用時(shí)(分鐘)20253035頻數(shù)(個(gè))15304015以加工這100個(gè)零件用時(shí)的頻率代替概率.(1)求的分布列與數(shù)學(xué)期望;(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過100分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.2、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.4、B【解析】

由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點(diǎn)睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.5、D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.6、C【解析】

由可得,故可求的值.【詳解】因?yàn)椋?,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.7、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.8、B【解析】

由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點(diǎn)睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.9、D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻?,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.10、C【解析】

根據(jù)等比數(shù)列的前項(xiàng)和公式,判斷出正確選項(xiàng).【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.11、C【解析】

分析函數(shù)的定義域和單調(diào)性,然后對選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)椋谏蠟樵龊瘮?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.12、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個(gè)單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、213892【解析】

根據(jù)題意畫出圖形,利用棱錐與棱臺的結(jié)構(gòu)特征求出正四棱臺的高,再計(jì)算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點(diǎn)睛】本題考查了棱錐與棱臺的結(jié)構(gòu)特征與應(yīng)用問題,也考查了棱臺的體積計(jì)算問題,屬于中檔題.14、【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【點(diǎn)睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于難題.15、.【解析】

計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.16、5.【解析】

由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)解法一:作的中點(diǎn),連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計(jì)算出二面角的余弦值.【詳解】(1)法一:作的中點(diǎn),連接,.又為的中點(diǎn),∴為的中位線,∴,又為的中點(diǎn),∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標(biāo)系如圖所示,則,,,,,,,,,,,.(1)設(shè)平面的一個(gè)法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設(shè)平面的一個(gè)法向量為,則,令,則,.∴.同理可算得平面的一個(gè)法向量為∴,又由圖可知二面角的平面角為一個(gè)鈍角,故二面角的余弦值為.【點(diǎn)睛】本小題考查線面的位置關(guān)系,空間向量與線面角,二面角等基礎(chǔ)知識,考查空間想象能力,推理論證能力,運(yùn)算求解能力,數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.18、(1).(2)【解析】

(1)先對函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時(shí),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時(shí),函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時(shí)恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時(shí),g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當(dāng)﹣2<t<0時(shí),g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣1不合題意,舍去;(iii)當(dāng)t=﹣2時(shí),g′(x)0,即g(x)在(0,+∞)上單調(diào)遞增,此時(shí)g(1)=﹣3不合題意;(iv)當(dāng)t<﹣2時(shí),g(x)在(1,)上單調(diào)遞減,在(0,1),()上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣3不合題意,綜上,t≥1時(shí),f(x)≥2恒成立.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性及極值,利用導(dǎo)數(shù)與函數(shù)的性質(zhì)處理不等式的恒成立問題,分類討論思想,屬于中檔題.19、,;.【解析】

由,公差,有,,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的通項(xiàng)公式;當(dāng)時(shí),由,所以,當(dāng)時(shí),由,,可得,進(jìn)而求出前項(xiàng)和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項(xiàng)公式.?dāng)?shù)列的公比,其通項(xiàng)公式.當(dāng)時(shí),由,所以.當(dāng)時(shí),由,,兩式相減得,所以.故所以的前項(xiàng)和,.又時(shí),,也符合上式,故.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項(xiàng)公式,前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識;考查運(yùn)算求解能力,方程思想,分類討論思想,應(yīng)用意識,屬于中檔題.20、(1)l:,C:;(2)【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;

(2)由(1)可得曲線是圓,求出圓心坐標(biāo)及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.∴圓心到直線的距離為:.∴【點(diǎn)睛】本題考查直線的普通坐標(biāo)方程、曲線的直角坐標(biāo)方程的求法,考查弦長的求法、運(yùn)算求解能力,是中檔題.21、(1).(2).【解析】

(1)先根據(jù)空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論