北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析2_第1頁(yè)
北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析2_第2頁(yè)
北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析2_第3頁(yè)
北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析2_第4頁(yè)
北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析2_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市匯文中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.2.已知的值域?yàn)?,?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.93.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln24.函數(shù)的部分圖象大致是()A. B.C. D.5.已知雙曲線的左,右焦點(diǎn)分別為、,過(guò)的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.6.的展開(kāi)式中的系數(shù)為()A. B. C. D.7.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.8.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.29.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.10.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長(zhǎng)線相交于點(diǎn)垂直的延長(zhǎng)線于點(diǎn).求證:14.設(shè)實(shí)數(shù),若函數(shù)的最大值為,則實(shí)數(shù)的最大值為_(kāi)_____.15.有以下四個(gè)命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;③對(duì)于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對(duì)稱.其中正確命題的序號(hào)為_(kāi)_____.16.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說(shuō)明理由.18.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.19.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長(zhǎng).20.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱軸方程.21.(12分)我國(guó)在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡(jiǎn)化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過(guò)4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).列聯(lián)表如下流動(dòng)人員非流動(dòng)人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過(guò)4天辦理社保手續(xù)所需時(shí)間超過(guò)4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開(kāi)座談會(huì),其中3人要求交書(shū)面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、A【解析】

利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.3、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線性相關(guān)的二次擬合問(wèn)題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.4、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項(xiàng).【詳解】,函數(shù)是奇函數(shù),排除,時(shí),,時(shí),,排除,當(dāng)時(shí),,時(shí),,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項(xiàng)判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項(xiàng).5、A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問(wèn)題,處理雙曲線離心率問(wèn)題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.6、C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.7、C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.8、A【解析】

求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.9、B【解析】

利用正態(tài)分布密度曲線的對(duì)稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對(duì)稱性求概率,屬于基礎(chǔ)題.10、B【解析】

利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.11、D【解析】

結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.12、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、證明見(jiàn)解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.14、【解析】

根據(jù),則當(dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因?yàn)?,又?dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由等價(jià)于,令,,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.15、①【解析】

由三角形的正弦定理和邊角關(guān)系可判斷①;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對(duì)稱的特點(diǎn)可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故②錯(cuò)誤;③對(duì)于函數(shù),若,滿足,但可能為奇函數(shù),故③錯(cuò)誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對(duì)稱,即對(duì)稱,故④錯(cuò)誤.故答案為:①.【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)存在定理和對(duì)稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.16、【解析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(0,2);(2)存在,理由見(jiàn)解析【解析】

(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.18、(1);(2).【解析】

(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問(wèn)題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時(shí),,所以;因?yàn)?,所以,解得,結(jié)合,所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問(wèn)題,熟記分類討論的思想、以及絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.19、(1);(2)【解析】

(1)通過(guò)求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識(shí)的運(yùn)用,屬于中檔題.20、(1),;(2),,.【解析】

(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對(duì)稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.21、(1)列聯(lián)表見(jiàn)解析,有;(2)分布列見(jiàn)解析,.【解析】

(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫(xiě)列聯(lián)表,計(jì)算出的觀測(cè)值,即可進(jìn)行判斷;(2)先計(jì)算出時(shí)間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動(dòng)人員210人,非流動(dòng)人員90人,所以辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員列聯(lián)表如下:辦理社保手續(xù)所需時(shí)間與是否流動(dòng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論