2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省云浮高考仿真模擬數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件2.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.3.的展開式中的一次項系數(shù)為()A. B. C. D.4.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.6.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.7.已知,則()A. B. C. D.8.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.9.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.10.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.11.已知角的頂點為坐標(biāo)原點,始邊與軸的非負(fù)半軸重合,終邊上有一點,則().A. B. C. D.12.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是______.15.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.16.設(shè)為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.18.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當(dāng)時,對于任意,當(dāng)時,不等式恒成立,求出實數(shù)的取值范圍.19.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.20.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.21.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.22.(10分)在中,角的對邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.2、D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.3、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.4、A【解析】

化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)為位于第一象限故選:A.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.5、A【解析】

求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.6、B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標(biāo)法:P點坐標(biāo)是三個頂點坐標(biāo)的平均數(shù).7、B【解析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.8、D【解析】

,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.9、B【解析】

連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】命題p:,為,又為真命題的充分不必要條件為,故11、B【解析】

根據(jù)角終邊上的點坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.12、B【解析】

由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、【解析】

先確定關(guān)于x的方程當(dāng)a為何值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當(dāng)時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.【點睛】本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.15、63【解析】

對進(jìn)行化簡,可得,再根據(jù)等比數(shù)列前項和公式進(jìn)行求解即可【詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【點睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時,常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)16、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質(zhì).【名師點睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學(xué)生等價轉(zhuǎn)化的思想與方程思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎(chǔ)題.18、(1)極小值為,極大值為.(2)【解析】

(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點在于對目標(biāo)式的變形,屬綜合性中檔題.19、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進(jìn)而得到函數(shù)的極值;(2)由題意可得,,求出的表達(dá)式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑涸鰠^(qū)間為,當(dāng),得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因為,所以設(shè),令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.20、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】

(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.21、(1)(2)【解析】

(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論