版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省農(nóng)安縣普通高中高三第二次模擬考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或2.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.3.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.4.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種5.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.6.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或17.如圖所示,三國時代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲200顆米粒(大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.648.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.9.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.10.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.11.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)12.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.14.已知集合A=,B=,若AB中有且只有一個元素,則實數(shù)a的值為_______.15.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)當(dāng)時,證明:;(2)設(shè)直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.19.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值20.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.22.(10分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標(biāo)準(zhǔn)方程;(2)設(shè)點的橫坐標(biāo)為,,為圓與曲線的公共點,若直線的斜率,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.2、C【解析】
先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因為在上單調(diào)遞增,且,所以當(dāng)時,;當(dāng)時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.3、C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.4、C【解析】
根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.5、C【解析】
利用復(fù)數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復(fù)數(shù)的三角形式的乘法運算法則是解題的關(guān)鍵,復(fù)數(shù)問題高考必考,常見考點有:點坐標(biāo)和復(fù)數(shù)的對應(yīng)關(guān)系,點的象限和復(fù)數(shù)的對應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運算,復(fù)數(shù)的模長的計算.6、D【解析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.7、B【解析】
設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。8、A【解析】
根據(jù)題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎(chǔ)題.9、A【解析】
根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.10、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.11、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。12、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,14、2【解析】
利用AB中有且只有一個元素,可得,可求實數(shù)a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質(zhì)是存同去異,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時取等號,由可知,,當(dāng)時取等號,,當(dāng)有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.16、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點處的切線的方程①,再設(shè)直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點,且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時,為單調(diào)遞增函數(shù),且,從而在上無零點;當(dāng)時,要使得在上存在零點,則只需,,因為為單調(diào)遞增函數(shù),,所以;因為為單調(diào)遞增函數(shù),且,因此;因為為整數(shù),且,所以.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.18、(1)(2)詳見解析【解析】
(1)利用可得的遞推關(guān)系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設(shè)的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關(guān)系式,我們常利用這個關(guān)系式實現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.19、(1)證明見解析;(2)存在,.【解析】
(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,連接EQ,利用線面平行的性質(zhì)定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點,∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點E,使平面DEM,此時,E是棱A的靠近點A的三等分點.【點睛】本題考查了線面垂直的判定定理、線面平行的性質(zhì)定理,考查了學(xué)生的推理能力以及空間想象能力,屬于空間幾何中的基礎(chǔ)題.20、(1);(2)【解析】
(1)當(dāng)時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當(dāng)時,由函數(shù)單調(diào)性可得,解得;②當(dāng)時,,所以符合題意;③當(dāng)時,由函數(shù)單調(diào)性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.21、(1);(2)【解析】
(1)根據(jù)正弦定理化簡得到,故,得到答案.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年健身器材租賃及體育場地管理服務(wù)合同3篇
- 2024年房地產(chǎn)包銷合作協(xié)議范本與合同履行監(jiān)督3篇
- 2024年度中鐵電子商務(wù)采購信息平臺數(shù)據(jù)備份與恢復(fù)合同2篇
- 2024年度商業(yè)活動單位廣告制作服務(wù)合同范本3篇
- 2024年度網(wǎng)絡(luò)主播與廣告公司合作推廣協(xié)議6篇
- 2024年新能源汽車充電設(shè)施合作銷售合同范本3篇
- 2024年度羊群代放牧技術(shù)指導(dǎo)與質(zhì)量保障合同書3篇
- 2024年大型養(yǎng)殖場承包養(yǎng)殖保險合作協(xié)議書3篇
- 2024年新能源電池材料購銷合同3篇
- 2024在線學(xué)生安全協(xié)議電子簽署及風(fēng)險評估合同3篇
- 高中英語新外研版必修1單詞英譯漢
- 鹿角形腎結(jié)石診斷治療指南
- 天津市河西區(qū)2023-2024學(xué)年高二上學(xué)期1月期末化學(xué)試題(解析版)
- 1.3 中華文明的起源 課件 2024-2025學(xué)年部編版七年級歷史上學(xué)期
- DB15-T 3600-2024 黑土地質(zhì)量等級劃分技術(shù)規(guī)范
- 《民用爆炸物品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化實施細(xì)則》解讀
- MIL-STD-1916抽樣計劃表(抽樣數(shù))大
- 當(dāng)代民航精神與文化智慧樹知到期末考試答案章節(jié)答案2024年中國民用航空飛行學(xué)院
- 第一單元 春之聲-《渴望春天》教學(xué)設(shè)計 2023-2024學(xué)年人教版初中音樂七年級下冊
- 養(yǎng)老護(hù)理員培訓(xùn)課件
- 裝修增項補充合同協(xié)議書
評論
0/150
提交評論