河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省南陽信陽等六市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i2.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對三個縣區(qū)進(jìn)行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.3.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.4.費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.5.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.7.袋中裝有標(biāo)號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.8.若,則“”的一個充分不必要條件是A. B.C.且 D.或9.若復(fù)數(shù)滿足,則()A. B. C. D.10.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.12.已知集合,,則()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設(shè)分別為人數(shù)、豬價,則___,___.14.設(shè),滿足約束條件,若的最大值是10,則________.15.已知是偶函數(shù),則的最小值為___________.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎?wù)呤莀______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求證:當(dāng)時,;(2)若對任意存在和使成立,求實數(shù)的最小值.18.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.19.(12分)2019年6月,國內(nèi)的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級時間的早晚與大學(xué)生愿意為套餐支付更多的費用作比較,可得出下圖的關(guān)系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗用戶的人數(shù)有變化?說明理由.20.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.21.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.22.(10分)已知離心率為的橢圓經(jīng)過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.2、A【解析】

每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進(jìn)行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3、D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運用,考查向量知識,屬于中檔題.4、B【解析】

基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.5、B【解析】

計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.6、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.7、C【解析】

先確定摸一次中獎的概率,5個人摸獎,相當(dāng)于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復(fù)試驗的公式得到結(jié)果.【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當(dāng)于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,考查獨立重復(fù)試驗的概率,解題時主要是看清摸獎5次,相當(dāng)于做了5次獨立重復(fù)試驗,利用公式做出結(jié)果,屬于中檔題.8、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.9、B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復(fù)數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.10、C【解析】

討論當(dāng)時,是否恒成立;討論當(dāng)恒成立時,是否成立,即可選出正確答案.【詳解】解:當(dāng)時,,由開口向上,則恒成立;當(dāng)恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.11、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.12、D【解析】

首先求出集合,再根據(jù)補(bǔ)集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補(bǔ)集的概念及運算,一元二次不等式的解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、10900【解析】

由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎(chǔ)題型.14、【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、2【解析】

由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當(dāng)且僅當(dāng)時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題16、乙、丁【解析】

本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進(jìn)行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)不等式等價于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個不同零點,且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時,由,所以在上是減函數(shù),所以,故.因為,所以,所以當(dāng)時,.(2)由(1)當(dāng)時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當(dāng)時,在上為減函數(shù),不合題意;(2)當(dāng)時,,由題意知在上不單調(diào),所以,即,當(dāng)時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數(shù)的最小值為.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立、等式能成立中的應(yīng)用,前者注意將欲證不等式合理變形,轉(zhuǎn)化為容易證明的新不等式,后者需根據(jù)等式能成立的特點確定出函數(shù)應(yīng)該具有的性質(zhì),再利用導(dǎo)數(shù)研究該性質(zhì),本題屬于難題.18、(1)(2)為定值.【解析】

(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.19、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗用戶沒有發(fā)生變化,詳見解析【解析】

(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗用戶人數(shù)增加.【點睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.20、(1);(2)①證明見解析;②證明見解析【解析】

(1)解方程即可;(2)①設(shè)直線,,,將點的坐標(biāo)用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標(biāo)準(zhǔn)方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標(biāo)準(zhǔn)方程、直線與橢圓位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.21、(1)不是,見解析(2)(3)【解析】

(1)利用遞推關(guān)系求出數(shù)列的通項公式,進(jìn)一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進(jìn)行分類討論,即可得答案;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論