內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題含解析_第1頁
內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題含解析_第2頁
內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題含解析_第3頁
內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題含解析_第4頁
內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古通遼市科左后旗甘旗卡第二中學2025屆高三下學期第五次調研考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.12.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.3.已知向量,(其中為實數),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.15.已知為等差數列,若,,則()A.1 B.2 C.3 D.66.已知是虛數單位,則復數()A. B. C.2 D.7.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.8.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”9.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數為;當無放回依次取出兩個小球時,記取出的紅球數為,則()A., B.,C., D.,10.已知函數,則不等式的解集是()A. B. C. D.11.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.12.已知集合A,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量,滿足,且,則與的夾角為____________.14.集合,,則_____.15.用數字、、、、、組成無重復數字的位自然數,其中相鄰兩個數字奇偶性不同的有_____個.16.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若,且函數在區(qū)間上單調遞增,求實數a的范圍;(2)若函數有兩個極值點,且存在滿足,令函數,試判斷零點的個數并證明.18.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.19.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)在中,角的對邊分別為,已知.(1)求角的大?。唬?)若,求的面積.21.(12分)若不等式在時恒成立,則的取值范圍是__________.22.(10分)在平面直角坐標系xOy中,曲線的參數方程為(,為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點M對應的參數,射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.2、B【解析】

根據圖象求得函數的解析式,即可得出函數的解析式,然后求出變換后的函數解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數解析式,同時也考查了利用函數圖象變換求參數,考查計算能力,屬于中等題.3、A【解析】

結合向量垂直的坐標表示,將兩個條件相互推導,根據能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.4、B【解析】

將問題轉化為等比數列問題,最終變?yōu)榍蠼獾缺葦盗谢玖康膯栴}.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.5、B【解析】

利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.6、A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.7、D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.8、B【解析】

解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.9、B【解析】

分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.10、B【解析】

由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.11、D【解析】

首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現,的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.12、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、(或寫成)【解析】

設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數量積運算,向量垂直轉化為數量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.14、【解析】

分析出集合A為奇數構成的集合,即可求得交集.【詳解】因為表示為奇數,故.故答案為:【點睛】此題考查求集合的交集,根據已知集合求解,屬于簡單題.15、【解析】

對首位數的奇偶進行分類討論,利用分步乘法計數原理和分類加法計數原理可得出結果.【詳解】①若首位為奇數,則第一、三、五個數位上的數都是奇數,其余三個數位上的數為偶數,此時,符號條件的位自然數個數為個;②若首位數為偶數,則首位數不能為,可排在第三或第五個數位上,第二、四、六個數位上的數為奇數,此時,符合條件的位自然數個數為個.綜上所述,符合條件的位自然數個數為個.故答案為:.【點睛】本題考查數的排列問題,要注意首位數字的分類討論,考查分步乘法計數和分類加法計數原理的應用,考查計算能力,屬于中等題.16、【解析】

先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)函數有兩個零點和【解析】試題分析:(1)求導后根據函數在區(qū)間單調遞增,導函數大于或等于0(2)先判斷為一個零點,然后再求導,根據,化簡求得另一個零點。解析:(1)當時,,因為函數在上單調遞增,所以當時,恒成立.[來源:Z&X&X&K]函數的對稱軸為.①,即時,,即,解之得,解集為空集;②,即時,即,解之得,所以③,即時,即,解之得,所以綜上所述,當函數在區(qū)間上單調遞增.(2)∵有兩個極值點,∴是方程的兩個根,且函數在區(qū)間和上單調遞增,在上單調遞減.∵∴函數也是在區(qū)間和上單調遞增,在上單調遞減∵,∴是函數的一個零點.由題意知:∵,∴,∴∴,∴又=∵是方程的兩個根,∴,,∴∵函數圖像連續(xù),且在區(qū)間上單調遞增,在上單調遞減,在上單調遞增∴當時,,當時,當時,∴函數有兩個零點和.18、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數),然后設直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點的坐標,注意到直線與的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設直線代入橢圓方程,化簡得,其一解為,另一解為,可求,用代入得,,為定值.考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.兩點間連線的斜率19、(1)證明見解析(2)【解析】

(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【點睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.20、(1);(2)【解析】

(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據正弦定理可得,進而求得的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論