版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省武漢新區(qū)第一學校2025屆高考數(shù)學倒計時模擬卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.104.設向量,滿足,,,則的取值范圍是A. B.C. D.5.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.6.設全集,集合,,則()A. B. C. D.7.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種8.已知是定義在上的奇函數(shù),當時,,則()A. B.2 C.3 D.9.若,則實數(shù)的大小關(guān)系為()A. B. C. D.10.已知,,則()A. B. C. D.11.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.12.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關(guān)系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過______分鐘人方可進入房間.15.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).16.數(shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.18.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.19.(12分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.20.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.21.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)已知函數(shù)(1)若,求證:(2)若,恒有,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因為,是銳角三角形的兩個內(nèi)角,所以且即,所以即,.故選:.【點睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.2、B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎(chǔ)題.3、C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數(shù)關(guān)于點中心對稱是解題的關(guān)鍵.4、B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關(guān)鍵,是基礎(chǔ)題.5、C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.6、D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.7、C【解析】
根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎(chǔ)題.8、A【解析】
由奇函數(shù)定義求出和.【詳解】因為是定義在上的奇函數(shù),.又當時,,.故選:A.【點睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.9、A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.10、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.11、A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.12、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為單位向量的夾角為,所以,所以==.14、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.15、135【解析】
根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.16、【解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調(diào)遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關(guān)于的函數(shù)表達式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯(lián)立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.18、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設,由(1)可得關(guān)系,再由直線l過點,可得,進而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.19、(1)見解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導函數(shù),根據(jù)導函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數(shù),則.當時,,所以在單調(diào)遞減.而,故當時,,即.(2)設函數(shù).在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.20、(1);(2)見解析.【解析】
(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調(diào)遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調(diào)遞增;又,,所以,使得,當時,;當時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.21、(1)見解析(2)【解析】
(1)連結(jié)BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設,則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學校實驗室設備更新及維修服務合同3篇
- 2024店鋪轉(zhuǎn)讓協(xié)議書
- 2024模具智能制造技術(shù)研發(fā)合同
- 2024標準版兩居室房車短期租賃合同版
- 2024服裝工裝定制合同
- 2024青島運動會官方用車租賃服務協(xié)議3篇
- 2024年行車設備安裝與維護合同3篇
- 2024年版城市供水項目特許經(jīng)營權(quán)協(xié)議
- 2024運營總監(jiān)國際業(yè)務拓展與跨國合作合同3篇
- 2025年度網(wǎng)絡安全技術(shù)股權(quán)合作與轉(zhuǎn)讓合同3篇
- 配件供應技術(shù)服務和質(zhì)保期服務計劃方案
- 中藥房培訓課題
- 供電方案審批流程
- 球墨鑄鐵管行業(yè)分析及市場研究報告
- 市政道路改造施工合理化建議
- 2024年廣東省廣州城投投資有限有限公司招聘筆試參考題庫含答案解析
- 2024中國出口信用保險公司江蘇分公司勞務派遣人員招聘筆試參考題庫附帶答案詳解
- 自然情懷-主題作文訓練
- 智能智能化智能眼鏡
- 三年級下冊數(shù)學混合計算100題及答案
- 社會工作專業(yè)見習教學大綱
評論
0/150
提交評論