信陽航空職業(yè)學院《廣告設計》2023-2024學年第一學期期末試卷_第1頁
信陽航空職業(yè)學院《廣告設計》2023-2024學年第一學期期末試卷_第2頁
信陽航空職業(yè)學院《廣告設計》2023-2024學年第一學期期末試卷_第3頁
信陽航空職業(yè)學院《廣告設計》2023-2024學年第一學期期末試卷_第4頁
信陽航空職業(yè)學院《廣告設計》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁信陽航空職業(yè)學院《廣告設計》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經典的方法。假設我們要對一組包含不同視角和縮放比例的物體圖像進行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感2、在計算機視覺的圖像配準任務中,假設要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配3、在計算機視覺的視頻目標跟蹤中,假設目標在視頻中被短暫遮擋。以下關于處理遮擋情況的方法,哪一項是不太有效的?()A.利用目標在遮擋前的運動軌跡預測其位置B.完全放棄對被遮擋目標的跟蹤,等待其重新出現(xiàn)C.結合目標的外觀特征和運動信息進行跟蹤D.借助周圍背景和其他相關物體的信息輔助跟蹤4、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析5、在計算機視覺的圖像修復任務中,假設要修復一張有部分缺失的圖像。以下關于圖像修復方法的描述,正確的是:()A.基于擴散的圖像修復方法能夠自然地填充缺失區(qū)域,但修復速度慢B.基于樣本的圖像修復方法可以快速生成修復結果,但容易出現(xiàn)重復紋理C.深度學習中的生成對抗網絡(GAN)在圖像修復中無法保證修復內容與周圍區(qū)域的一致性D.所有的圖像修復方法都能夠完美地恢復出圖像缺失部分的真實內容6、對于視頻中的異常檢測任務,假設要在一段監(jiān)控視頻中檢測出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準確檢測異常?()A.建立正常行為模型,對比檢測異常B.只關注視頻中的顯著運動區(qū)域C.隨機判斷視頻中的幀是否異常D.不進行異常檢測,直接忽略異常事件7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法8、在計算機視覺的醫(yī)學圖像分析任務中,假設要檢測醫(yī)學圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學圖像的特殊性?()A.結合先驗醫(yī)學知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標記圖像中的區(qū)域為腫瘤區(qū)域9、在計算機視覺的視頻分析中,假設要對一段監(jiān)控視頻中的異常行為進行檢測。以下關于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內容D.結合時空特征,同時考慮空間和時間維度的信息10、計算機視覺中的動作識別用于分析視頻中的人體動作。假設要識別一段舞蹈視頻中的動作類別。以下關于動作識別方法的描述,哪一項是不準確的?()A.可以基于時空特征提取的方法,捕捉動作在時間和空間上的變化B.深度學習中的循環(huán)神經網絡(RNN)和長短時記憶網絡(LSTM)適用于動作序列的分析C.動作識別只需要關注人體的關節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據融合,如結合音頻和視頻信息,可以提高動作識別的準確率11、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學習的方法C.基于深度學習的方法,如SRCNND.基于小波變換的方法12、在計算機視覺的圖像分割任務中,假設要將一張醫(yī)學圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進行診斷和治療。這張醫(yī)學圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復雜情況時可能更具優(yōu)勢?()A.基于閾值的分割方法,根據像素值設定閾值進行分割B.基于區(qū)域生長的分割方法,從種子點開始逐漸擴展區(qū)域C.基于深度學習的語義分割算法,如U-NetD.隨機分割圖像,然后根據后續(xù)分析進行調整13、計算機視覺中的特征提取是非常關鍵的步驟。假設要從一組圖像中提取具有代表性的特征,以下關于特征提取方法的描述,正確的是:()A.手工設計的特征,如SIFT和HOG,在任何情況下都比深度學習自動學習的特征更有效B.深度學習中的卷積神經網絡能夠自動學習到圖像的多層次特征,具有很強的表達能力C.特征提取的結果對后續(xù)的圖像分類和目標檢測任務沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要14、計算機視覺中的視覺跟蹤在監(jiān)控、機器人導航等領域有廣泛應用。假設一個機器人需要跟蹤一個移動的物體,同時適應物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關濾波的跟蹤方法B.基于深度學習的孿生網絡跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運動估計的跟蹤方法15、假設我們要開發(fā)一個計算機視覺系統(tǒng),用于檢測生產線上產品的表面缺陷。由于產品的種類繁多、缺陷類型復雜,以下哪種方法可能需要更多的計算資源和時間來訓練模型?()A.基于傳統(tǒng)機器學習的方法B.基于淺層神經網絡的方法C.基于深度學習的方法D.基于模板匹配的方法16、計算機視覺中的場景理解是理解圖像或視頻中的場景內容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現(xiàn)場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義17、當進行圖像的目標計數(shù)任務時,假設要統(tǒng)計一張圖像中某種物體的數(shù)量,例如統(tǒng)計羊群中的羊的數(shù)量。以下哪種方法可能更準確地完成計數(shù)任務?()A.基于深度學習的目標計數(shù)模型B.手動逐個計數(shù)C.估計圖像中物體的平均大小,然后計算總面積來推算數(shù)量D.隨機猜測物體的數(shù)量18、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像19、對于圖像分類任務,假設需要對大量的自然風景圖像進行分類,包括山脈、森林、海灘和沙漠等場景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準確性和泛化能力,以下哪種策略是至關重要的?()A.增加數(shù)據增強操作,如旋轉、翻轉和顏色變換B.只使用少量具有代表性的圖像進行訓練C.選擇簡單的分類模型,避免過擬合D.不進行任何預處理,直接使用原始圖像訓練模型20、計算機視覺在智能零售中的應用可以改善購物體驗和提高運營效率。假設一個超市需要通過計算機視覺實現(xiàn)自動結賬和庫存管理。以下關于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術自動識別顧客購買的商品,實現(xiàn)快速結賬B.能夠實時監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內的行為和偏好,為營銷策略提供數(shù)據支持21、計算機視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務。假設要在一個擁擠的公共場所中準確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學習的行人檢測C.基于運動信息的行人檢測D.基于形狀模板的行人檢測22、計算機視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下關于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準確率高B.深度學習中的度量學習方法能夠學習到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響23、計算機視覺中的光流計算用于估計圖像中像素的運動。假設要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法24、當利用計算機視覺進行圖像分類任務,例如區(qū)分不同種類的動物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術可能是有效的?()A.數(shù)據增強B.正則化C.模型融合D.以上都是25、在計算機視覺的動作識別任務中,識別視頻中的人物動作。假設要識別一段舞蹈視頻中的動作,以下關于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經網絡,能夠直接處理視頻數(shù)據,進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別26、計算機視覺在自動駕駛領域有重要應用。假設車輛需要根據攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓練數(shù)據中的交通標志種類27、假設要構建一個能夠對服裝進行款式和顏色識別的計算機視覺系統(tǒng),用于時尚推薦和庫存管理。在處理服裝圖像時,由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設計的特征B.基于深度學習的自動特征C.顏色直方圖D.以上都是28、圖像增強是為了改善圖像的質量和視覺效果。假設我們有一張由于光照不足而顯得暗淡的圖像,需要對其進行增強以突出細節(jié)。以下哪種圖像增強方法可以有效地提高圖像的對比度,同時避免過度增強導致的噪聲放大?()A.直方圖均衡化B.灰度變換C.銳化濾波D.中值濾波29、在計算機視覺中,三維重建是從二維圖像恢復物體的三維結構。以下關于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結構光或深度學習方法進行三維重建B.三維重建在虛擬現(xiàn)實、文物保護和工業(yè)設計等領域有著廣泛的應用C.三維重建的結果總是精確無誤的,能夠完全還原物體的真實三維結構D.噪聲、遮擋和圖像質量等因素會對三維重建的結果產生影響30、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的邊界優(yōu)化?()A.條件隨機場B.全連接條件隨機場C.深度學習D.以上都是二、應用題(本大題共5個小題,共25分)1、(本題5分)利用目標檢測算法,在衛(wèi)星圖像中檢測建筑物。2、(本題5分)通過深度學習模型,對一批手寫數(shù)字圖像進行識別和分類。3、(本題5分)對音樂演奏會的視頻進行樂器音色分析和演奏技巧評估。4、(本題5分)利用圖像識別技術,對藥品包裝上的藥品信息進行識別和核對。5、(本題5分)基于深度學習,實現(xiàn)對乒乓球比賽中擦邊球的檢測。三、簡答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論