福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題含解析_第1頁
福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題含解析_第2頁
福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題含解析_第3頁
福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題含解析_第4頁
福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省福州市平潭縣新世紀學校2025屆高考沖刺模擬數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數圖象的一個對稱中心為()A. B. C. D.2.已知滿足,則()A. B. C. D.3.已知函數,關于的方程R)有四個相異的實數根,則的取值范圍是(

)A. B. C. D.4.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.5.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質:①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.6.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.17.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.28.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,9.已知集合,,若,則實數的值可以為()A. B. C. D.10.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.1011.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.12.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.函數的定義域為__________.15.函數與的圖象上存在關于軸的對稱點,則實數的取值范圍為______.16.在數列中,已知,則數列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數列的前n項和為,,是與的等比中項.(1)求;(2)設數列滿足,,求數列的通項公式.18.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.19.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.20.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.21.(12分)已知a>0,證明:1.22.(10分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先化簡函數解析式,再根據函數的圖象變換規(guī)律,可得所求函數的解析式為,再由正弦函數的對稱性得解.【詳解】,

將函數圖象上各點的橫坐標伸長到原來的3倍,所得函數的解析式為,

再向右平移個單位長度,所得函數的解析式為,,可得函數圖象的一個對稱中心為,故選D.【點睛】三角函數的圖象與性質是高考考查的熱點之一,經常考查定義域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現,在復習時要注意基礎知識的理解與落實.三角函數的性質由函數的解析式確定,在解答三角函數性質的綜合試題時要抓住函數解析式這個關鍵,在函數解析式較為復雜時要注意使用三角恒等變換公式把函數解析式化為一個角的一個三角函數形式,然后利用正弦(余弦)函數的性質求解.2、A【解析】

利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.3、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,

當時,恒成立,時,單調遞增且,方程R)有四個相異的實數根.令=則,,即.4、D【解析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.5、B【解析】

根據新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關鍵在于理解,運用新定義進行求值,屬于中檔題.6、B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.7、B【解析】

求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.8、D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區(qū)域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.9、D【解析】

由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.10、C【解析】

根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.11、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數量積的坐標表示,屬于基礎題.12、D【解析】

根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

由向量垂直得向量的數量積為0,根據數量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數量積的關系是解題關鍵.14、【解析】

根據函數成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.15、【解析】

先求得與關于軸對稱的函數,將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數的取值范圍.【詳解】因為關于軸對稱的函數為,因為函數與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數與的圖象上存在關于軸的對稱點,綜上可得,實數的取值范圍為.故答案為:【點睛】本小題主要考查利用導數求解函數的零點以及對稱性,函數與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.16、【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎題.18、(1)(2)直線l的斜率為或【解析】

(1)根據已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯立,轉化為,借助向量的數量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關于的函數表達式,利用不等式的性質可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.20、證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.21、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論