上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題含解析_第1頁
上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題含解析_第2頁
上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題含解析_第3頁
上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題含解析_第4頁
上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市普陀區(qū)2025屆高考仿真卷數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當時,函數(shù)的圖象大致是()A. B.C. D.2.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.3.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.4.設,,,則的大小關系是()A. B. C. D.5.已知i為虛數(shù)單位,則()A. B. C. D.6.在復平面內,復數(shù)z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數(shù)是()A. B. C. D.7.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.8.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.69.復數(shù)的共軛復數(shù)為()A. B. C. D.10.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知定義在上的函數(shù)滿足,且當時,.設在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.12.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.14.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)15.已知,,分別為內角,,的對邊,,,,則的面積為__________.16.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(Ⅰ)討論函數(shù)的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項和為,求證:.18.(12分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.19.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.20.(12分)已知橢圓()經(jīng)過點,離心率為,、、為橢圓上不同的三點,且滿足,為坐標原點.(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.21.(12分)設橢圓:的右焦點為,右頂點為,已知橢圓離心率為,過點且與軸垂直的直線被橢圓截得的線段長為3.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線斜率的取值范圍.22.(10分)隨著電子閱讀的普及,傳統(tǒng)紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預測,方案二:選取后5年數(shù)據(jù)進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數(shù)多于只購買紙質版本人數(shù)的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.2、A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學期望為.故選:A.【點睛】本題考查隨機變量數(shù)學期望的計算,考查計算能力,屬于基礎題.3、B【解析】

利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質等基礎知識,考查數(shù)學運算求解能力和分類討論思想,是中等題.4、A【解析】

選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調性即可求解.【詳解】因為對數(shù)函數(shù)在上單調遞增,所以,因為對數(shù)函數(shù)在上單調遞減,所以,因為指數(shù)函數(shù)在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.5、A【解析】

根據(jù)復數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數(shù)代數(shù)運算,屬于基礎題題.6、A【解析】

由復數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數(shù)可求.【詳解】解:∵復數(shù)z=i(i為虛數(shù)單位)在復平面中對應點Z(0,1),

∴=(0,1),將繞原點O逆時針旋轉得到,

設=(a,b),,則,即,

又,解得:,∴,對應復數(shù)為.故選:A.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.7、A【解析】

設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.8、A【解析】

根據(jù)雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數(shù)學運算能力.9、D【解析】

直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.10、A【解析】

設成立;反之,滿足,但,故選A.11、C【解析】

由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數(shù)恒成立,設,只需找到數(shù)列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數(shù)列的最大值為,所以.故選:C.【點睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調性的判斷等知識,是一道較為綜合的數(shù)列題.12、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關幾何量的數(shù)據(jù)是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學生的推理能力.14、【解析】

基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.15、【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.16、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)函數(shù)在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導數(shù),通過解關于導數(shù)的不等式,從而求出函數(shù)的單調區(qū)間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導數(shù),通過討論a的范圍,得到函數(shù)的單調性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項,1為公差的等差數(shù)列,,,問題轉化為證明:,通過換元法或數(shù)學歸納法進行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當時,f′(x)<2,當時,f′(x)>2,所以函數(shù)f(x)在上單調遞減,在單調遞增.(Ⅱ)設,則,因為x≥2,故,(ⅰ)當a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調遞增,而g(2)=2,所以當時,g(x)>2,即f(x)>ax;(ⅲ)當a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項,1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因為,所以,故.法二:?下面用數(shù)學歸納法證明.(1)當n=1時,令x=1代入,即得,不等式成立(1)假設n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點:1利用導數(shù)研究函數(shù)的單調性;1、利用導數(shù)研究函數(shù)的最值;3、數(shù)列的通項公式;4、數(shù)列的前項和;5、不等式的證明.18、(1);(2).【解析】

(1)由可得出,兩式作差可求得數(shù)列的通項公式;(2)求得,利用數(shù)列的單調性的定義判斷數(shù)列的單調性,由此可求得數(shù)列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數(shù)列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數(shù)列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數(shù)列的單調性求數(shù)列中的最小項,考查推理能力與計算能力,屬于中等題.19、(1)點M的極坐標為或(2)【解析】

(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.20、(1)證明見解析;(2).【解析】

(1)首先根據(jù)題中條件求出橢圓方程,設、、點坐標,根據(jù)利用坐標表示出即可得證;(2)設直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設,,,由為的重心,;又因為,,,,(2)當?shù)男甭什淮嬖跁r:,,,代入橢圓得,,,當?shù)男甭蚀嬖跁r:設直線為,這里,由,,根據(jù)韋達定理有,,,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標關系,直線與橢圓所交弦長,屬于一般題.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關于x的一元二次方程,利用根與系數(shù)的關系求得B的坐標,再寫出MH所在直線方程,求出H的坐標,由BF⊥HF,解得.由方程組消去y,解得,由,得到,轉化為關于k的不等式,求得k的范圍.【詳解】(Ⅰ)因為過焦點且垂直于長軸的直線被橢圓截得的線段長為3,所以,因為橢圓離心率為,所以,又,解得,,,所以橢圓的方程為;(Ⅱ)設直線的斜率為,則,設,由得,解得,或,由題意得,從而,由(Ⅰ)知,,設,所以,,因為,所以,所以,解得,所以直線的方程為,設,由消去,解得,在中,,即,所以,即,解得,或.所以直線的斜率的取值范圍為.【點睛】本題考查在直線與橢圓的位置關系中由已知條件求直線的斜率取值范圍問題,還考查了由離心率求橢圓的標準方程,屬于難題.22、(1)選取方案二更合適;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論