2024屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)_第1頁
2024屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)_第2頁
2024屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)_第3頁
2024屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)_第4頁
2024屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆上海市普通中學(xué)高三下期末考試數(shù)學(xué)試題(B卷)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,則()A. B.C. D.2.雙曲線x2a2A.y=±2x B.y=±3x3.若復(fù)數(shù),則()A. B. C. D.204.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,5.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.6.設(shè)為銳角,若,則的值為()A. B. C. D.7.某工廠利用隨機(jī)數(shù)表示對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,……,599,600.從中抽取60個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)是()A.324 B.522 C.535 D.5788.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.9.設(shè)全集,集合,.則集合等于()A. B. C. D.10.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件11.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.12.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.二、填空題:本題共4小題,每小題5分,共20分。13.從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.14.已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_________.15.若實(shí)數(shù)滿足不等式組,則的最小值是___16.為激發(fā)學(xué)生團(tuán)結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個(gè)班進(jìn)行班級(jí)間的拔河比賽.每?jī)砂嘀g只比賽1場(chǎng),目前(—)班已賽了4場(chǎng),(二)班已賽了3場(chǎng),(三)班已賽了2場(chǎng),(四)班已賽了1場(chǎng).則目前(五)班已經(jīng)參加比賽的場(chǎng)次為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計(jì)合格不合格總計(jì)(Ⅱ)從上述樣本中,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生問卷中任意選2個(gè),記來自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.20.(12分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)在中,、、的對(duì)應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長(zhǎng).22.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.2.A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a23.B【解析】

化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.4.B【解析】

根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.5.A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.6.D【解析】

用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.【點(diǎn)睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.7.D【解析】

因?yàn)橐獙?duì)600個(gè)零件進(jìn)行編號(hào),所以編號(hào)必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個(gè)編號(hào).【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號(hào)內(nèi)的數(shù)據(jù)依次為:,因?yàn)?35重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個(gè)數(shù)據(jù)為578.選D.【點(diǎn)睛】本題考查了隨機(jī)數(shù)表表的應(yīng)用,正確掌握隨機(jī)數(shù)表法的使用方法是解題的關(guān)鍵.8.B【解析】

根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.9.A【解析】

先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.10.A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.11.C【解析】

根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.12.A【解析】

推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,求解時(shí)注意辨別概率的模型.14.0或6【解析】

計(jì)算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點(diǎn)睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。15.-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過A點(diǎn)時(shí)目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-116.2【解析】

根據(jù)比賽場(chǎng)次,分析,畫出圖象,計(jì)算結(jié)果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場(chǎng).故答案為:2【點(diǎn)睛】本題考查推理,計(jì)數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問題的能力,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)填表見解析,有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān);(Ⅱ)分布列見解析,【解析】

(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計(jì)算得到答案.(Ⅱ),計(jì)算,,,得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計(jì)合格101626不合格10414總計(jì)202040,故有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.18.(1);(2)【解析】

(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.19.(1)證明見解析;(2).【解析】

(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個(gè)法向量為,則,令,則,又平面的一個(gè)法向量為,所以二面角的余弦值為,即二面角的余弦值為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識(shí)點(diǎn)有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.20.(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時(shí),的面積有最大值4.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.21.(1);(2).【解析】

(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的綜合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論