版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁宜昌科技職業(yè)學(xué)院
《機(jī)器學(xué)習(xí)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)監(jiān)督學(xué)習(xí)問題中,我們需要評估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)2、某機(jī)器學(xué)習(xí)項(xiàng)目需要對文本進(jìn)行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負(fù)矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用3、在一個(gè)強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)4、在機(jī)器學(xué)習(xí)中,模型評估是非常重要的環(huán)節(jié)。以下關(guān)于模型評估的說法中,錯(cuò)誤的是:常用的模型評估指標(biāo)有準(zhǔn)確率、精確率、召回率、F1值等。可以通過交叉驗(yàn)證等方法來評估模型的性能。那么,下列關(guān)于模型評估的說法錯(cuò)誤的是()A.準(zhǔn)確率是指模型正確預(yù)測的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預(yù)測為正類的樣本中真正為正類的比例C.召回率是指真正為正類的樣本中被模型預(yù)測為正類的比例D.模型的評估指標(biāo)越高越好,不需要考慮具體的應(yīng)用場景5、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語義和語法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長處理序列數(shù)據(jù),但長期依賴問題較嚴(yán)重C.長短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢6、假設(shè)正在構(gòu)建一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關(guān)的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動(dòng)問題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.混合推薦D.以上方法都可以嘗試7、想象一個(gè)語音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語音轉(zhuǎn)換為文字。語音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對短語音處理較好,但對復(fù)雜語音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語音識(shí)別模型,直接從語音到文字,減少中間步驟,但對長語音的處理可能不夠靈活D.基于Transformer架構(gòu)的語音識(shí)別模型,利用自注意力機(jī)制捕捉長距離依賴,性能優(yōu)秀,但計(jì)算資源需求大8、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評價(jià)指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差9、在一個(gè)圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌模浚ǎ〢.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)10、某研究需要對一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器11、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測任務(wù),例如在圖像中檢測出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測12、在進(jìn)行圖像識(shí)別任務(wù)時(shí),需要對大量的圖像數(shù)據(jù)進(jìn)行特征提取。假設(shè)我們有一組包含各種動(dòng)物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設(shè)計(jì)特征方法,可能會(huì)面臨諸多挑戰(zhàn),例如特征的選擇和設(shè)計(jì)需要豐富的專業(yè)知識(shí)和經(jīng)驗(yàn)。而使用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征。那么,以下關(guān)于CNN在圖像特征提取方面的描述,哪一項(xiàng)是正確的?()A.CNN只能提取圖像的低級特征,如邊緣和顏色B.CNN能夠同時(shí)提取圖像的低級和高級語義特征,具有強(qiáng)大的表達(dá)能力C.CNN提取的特征與圖像的內(nèi)容無關(guān),主要取決于網(wǎng)絡(luò)結(jié)構(gòu)D.CNN提取的特征是固定的,無法根據(jù)不同的圖像數(shù)據(jù)集進(jìn)行調(diào)整13、假設(shè)正在進(jìn)行一個(gè)異常檢測任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以14、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以15、在進(jìn)行時(shí)間序列預(yù)測時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測股票價(jià)格的走勢。以下關(guān)于時(shí)間序列預(yù)測方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過對歷史數(shù)據(jù)的加權(quán)平均和殘差來進(jìn)行預(yù)測B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測任務(wù)D.所有的時(shí)間序列預(yù)測方法都能準(zhǔn)確地預(yù)測未來的股票價(jià)格,不受市場不確定性和突發(fā)事件的影響16、在一個(gè)圖像識(shí)別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進(jìn)行優(yōu)化17、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類、目標(biāo)檢測、圖像分割等任務(wù)。常見的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對抗攻擊等18、在機(jī)器學(xué)習(xí)中,對于一個(gè)分類問題,我們需要選擇合適的算法來提高預(yù)測準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯19、假設(shè)正在開發(fā)一個(gè)自動(dòng)駕駛系統(tǒng),其中一個(gè)關(guān)鍵任務(wù)是目標(biāo)檢測,例如識(shí)別道路上的行人、車輛和障礙物。在選擇目標(biāo)檢測算法時(shí),需要考慮算法的準(zhǔn)確性、實(shí)時(shí)性和對不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測算法在實(shí)時(shí)性要求較高的場景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實(shí)時(shí)應(yīng)用20、假設(shè)要使用機(jī)器學(xué)習(xí)算法來預(yù)測房價(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹回歸模型C.支持向量回歸模型D.以上模型都可能適用二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)說明機(jī)器學(xué)習(xí)在運(yùn)動(dòng)醫(yī)學(xué)中的損傷評估。2、(本題5分)解釋機(jī)器學(xué)習(xí)中過擬合和欠擬合的概念。3、(本題5分)簡述機(jī)器學(xué)習(xí)在生態(tài)學(xué)中的物種保護(hù)。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用生物信息學(xué)算法數(shù)據(jù)挖掘生物信息中的潛在模式。2、(本題5分)借助免疫細(xì)胞信號(hào)通路數(shù)據(jù)研究免疫反應(yīng)的調(diào)控。3、(本題5分)借助圖書館學(xué)數(shù)據(jù)優(yōu)化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版智能安防系統(tǒng)建設(shè)合同3篇
- 二零二五版家具回收與環(huán)保處理服務(wù)合同2篇
- 2024版網(wǎng)絡(luò)技術(shù)服務(wù)外包合同
- 二零二五版建筑保溫施工與智能家居系統(tǒng)集成合同3篇
- 二零二五年度環(huán)保型廣告牌銷售、安裝及廣告內(nèi)容合作合同3篇
- 2024版城市軌道交通設(shè)施維修保養(yǎng)合同
- 二零二五年度駕駛員押運(yùn)員安全責(zé)任與聘用合同3篇
- 二零二五版文化創(chuàng)意產(chǎn)業(yè)擔(dān)保合同協(xié)議書2篇
- 2024版?zhèn)€人資金借用詳細(xì)協(xié)議協(xié)議版
- 二手房定金合同格式范文(2024版)
- 高一學(xué)生心理素質(zhì)描述【6篇】
- 給男友的道歉信10000字(十二篇)
- 2020年高級統(tǒng)計(jì)實(shí)務(wù)與案例分析真題及答案
- 全面質(zhì)量管理(TQM)基本知識(shí)
- 練字本方格模板
- 產(chǎn)品供貨質(zhì)量保障措施
- 電力電纜高頻局放試驗(yàn)報(bào)告
- JJG 517-2016出租汽車計(jì)價(jià)器
- JJF 1914-2021金相顯微鏡校準(zhǔn)規(guī)范
- GB/T 32045-2015節(jié)能量測量和驗(yàn)證實(shí)施指南
- GB/T 10001.6-2021公共信息圖形符號(hào)第6部分:醫(yī)療保健符號(hào)
評論
0/150
提交評論