益陽師范高等??茖W(xué)校《爬蟲及可視化分析》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
益陽師范高等??茖W(xué)?!杜老x及可視化分析》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
益陽師范高等??茖W(xué)?!杜老x及可視化分析》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁益陽師范高等??茖W(xué)?!杜老x及可視化分析》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過路徑規(guī)劃算法優(yōu)化貨物運輸路線,降低運輸成本B.利用圖像識別技術(shù)實現(xiàn)貨物的自動分揀和識別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求2、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是3、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識別4、人工智能中的知識圖譜技術(shù)可以將實體、關(guān)系和屬性以圖的形式表示,為智能應(yīng)用提供豐富的語義信息。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識抽取和融合方面最為關(guān)鍵?()A.自然語言處理技術(shù)B.圖像識別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運用5、人工智能在醫(yī)療領(lǐng)域有著廣泛的應(yīng)用前景,例如疾病診斷、藥物研發(fā)和醫(yī)療影像分析等。以下關(guān)于人工智能在醫(yī)療領(lǐng)域應(yīng)用的描述,不正確的是()A.人工智能可以通過分析大量的醫(yī)療數(shù)據(jù),輔助醫(yī)生進(jìn)行疾病的早期診斷和預(yù)測B.在藥物研發(fā)中,人工智能可以加速藥物篩選和優(yōu)化藥物配方的過程C.雖然人工智能在醫(yī)療領(lǐng)域有諸多應(yīng)用,但它不能替代醫(yī)生的專業(yè)判斷和臨床經(jīng)驗D.人工智能在醫(yī)療領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不存在任何風(fēng)險和挑戰(zhàn)6、人工智能在醫(yī)療領(lǐng)域的應(yīng)用不斷拓展。假設(shè)利用人工智能輔助醫(yī)生進(jìn)行疾病診斷,以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.人工智能可以分析醫(yī)學(xué)影像,幫助醫(yī)生發(fā)現(xiàn)潛在的病變B.基于大數(shù)據(jù)的人工智能模型能夠提供更準(zhǔn)確的診斷建議,但不能取代醫(yī)生的最終判斷C.人工智能在醫(yī)療中的應(yīng)用可以完全避免誤診和漏診的情況發(fā)生D.醫(yī)生和人工智能系統(tǒng)的合作可以提高醫(yī)療效率和質(zhì)量7、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個自適應(yīng)學(xué)習(xí)系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.根據(jù)學(xué)生的學(xué)習(xí)進(jìn)度和表現(xiàn),動態(tài)調(diào)整學(xué)習(xí)內(nèi)容和難度B.利用情感分析技術(shù)了解學(xué)生的學(xué)習(xí)情緒,提供相應(yīng)的激勵和支持C.人工智能驅(qū)動的教育系統(tǒng)可以完全替代教師的角色,實現(xiàn)自主學(xué)習(xí)D.結(jié)合虛擬現(xiàn)實和增強現(xiàn)實技術(shù),創(chuàng)造沉浸式的學(xué)習(xí)體驗8、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進(jìn)行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計D.以上都是9、人工智能中的知識表示和推理是實現(xiàn)智能系統(tǒng)的基礎(chǔ)。假設(shè)要構(gòu)建一個醫(yī)療診斷專家系統(tǒng),能夠根據(jù)患者的癥狀、檢查結(jié)果等信息進(jìn)行推理和診斷。以下哪種知識表示方法最適合用于表示復(fù)雜的醫(yī)學(xué)知識和推理規(guī)則,并且便于系統(tǒng)的更新和維護(hù)?()A.產(chǎn)生式規(guī)則B.語義網(wǎng)絡(luò)C.框架表示D.一階謂詞邏輯10、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說法,哪一項是正確的?()A.可以使用少量標(biāo)注數(shù)據(jù)獲得準(zhǔn)確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強技術(shù)可以提高模型的魯棒性D.不需要對模型進(jìn)行驗證和評估11、在人工智能的計算機視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響12、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用13、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是14、在人工智能的文本分類任務(wù)中,假設(shè)要對大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容15、在機器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)是兩種主要的學(xué)習(xí)方式??紤]一個場景,我們有大量未標(biāo)記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結(jié)構(gòu)。以下哪種機器學(xué)習(xí)方法更適合這種情況?()A.線性回歸B.決策樹C.聚類分析D.邏輯回歸二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在智能人力資源需求預(yù)測中的技術(shù)。2、(本題5分)簡述循環(huán)神經(jīng)網(wǎng)絡(luò)在處理序列數(shù)據(jù)中的應(yīng)用。3、(本題5分)解釋數(shù)據(jù)增強在機器學(xué)習(xí)中的作用。4、(本題5分)解釋人工智能在智能市場趨勢分析中的作用。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的Keras庫,實現(xiàn)一個基于雙向長短時記憶網(wǎng)絡(luò)(Bi-LSTM)的情感分析模型,對電影評論數(shù)據(jù)進(jìn)行情感分類。分析不同的詞嵌入方法對模型性能的影響。2、(本題5分)使用機器學(xué)習(xí)算法對氣象數(shù)據(jù)進(jìn)行分析,預(yù)測極端天氣事件的發(fā)生概率,為防災(zāi)減災(zāi)提供支持。3、(本題5分)利用Python的Keras庫,實現(xiàn)一個基于多層感知機(MLP)的模型,對氣象衛(wèi)星云圖數(shù)據(jù)進(jìn)行天氣類型分類。分析不同的特征提取方法和模型超參數(shù)對分類準(zhǔn)確率的影響。4、(本題5分)利用Python實現(xiàn)一個基于規(guī)則的專家系統(tǒng),用于診斷某種疾病。定義疾病的癥狀、規(guī)則和推理邏輯,輸入患者的癥狀信息,系統(tǒng)能夠給出可能的診斷結(jié)果和建議。5、(本題5分)利用自然語言處理技術(shù),對社交媒體上的用戶評論進(jìn)行觀點挖掘和情感分析。提取用戶對某一產(chǎn)品、事件或話題的看法和態(tài)度,為企業(yè)和政府了解公眾意見提供支持。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)探討一個基于人工智

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論