湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題含解析_第1頁
湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題含解析_第2頁
湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題含解析_第3頁
湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題含解析_第4頁
湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省衡陽市樟樹中學2025屆高考仿真卷數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數為()A.-30 B.-40 C.40 D.502.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,3.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.4.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.5.已知,則()A.2 B. C. D.36.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區(qū)間是()A. B. C. D.7.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.8.集合中含有的元素個數為()A.4 B.6 C.8 D.129.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.10.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.12.若點是角的終邊上一點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實數使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數”,下列各組函數中是對應區(qū)間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.14.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.15.已知正數a,b滿足a+b=1,則的最小值等于__________,此時a=____________.16.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數在上的零點個數.18.(12分)已知矩陣,.求矩陣;求矩陣的特征值.19.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.20.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.21.(12分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區(qū)間及圖象的對稱軸方程.22.(10分)已知函數.(1)當時,不等式恒成立,求的最小值;(2)設數列,其前項和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【點睛】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.2、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.3、D【解析】

設,利用余弦定理,結合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數學運算能力.4、D【解析】

根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.5、A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.6、B【解析】

先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數的單調區(qū)間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.7、C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.8、B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B9、D【解析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.10、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.11、A【解析】

設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.12、A【解析】

根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題14、2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.15、3【解析】

根據題意,分析可得,由基本不等式的性質可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據題意,正數a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.【點睛】本題考查基本不等式及其應用,考查轉化與化歸能力,屬于基礎題.16、【解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數在有3個零點.【解析】

(Ⅰ)求出導數,寫出切線方程;(Ⅱ)二次求導,判斷單調遞減,結合零點存在性定理,判斷即可;(Ⅲ),數形結合得出結論.【詳解】解:(Ⅰ),,,故在點,處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點存在性定理,存在唯一一個零點,,當時,遞增;當時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數在有3個零點.【點睛】本題主要考查利用導數求切線方程,考查零點存在性定理的應用,關鍵是能夠通過導函數的單調性和零點存在定理確定導函數的零點個數,進而確定函數的單調性,屬于難題.18、;,.【解析】

由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于常考題.19、(1)(2)4【解析】

(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數的關系,以及垂直關系,得出關系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設,直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關系,以及拋物線與圓的方程應用問題,考查轉化思想以及計算能力,是中檔題.20、(1),(2)最大值,最小值【解析】

(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.21、(1),;(2),,.【解析】

(1)直接利用同角三角函數關系式的變換的應用求出結果.(2)首先把函數的關系式變形成正弦型函數,進一步利用正弦型函數的性質的應用求出結果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數關系式的恒等變換,正弦型函數的性質的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.22、(1);(2)證明見解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論