版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省菏澤市部分重點學校2025屆高三下學期第五次調研考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值2.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.3.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.4.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.05.已知集合,則()A. B. C. D.6.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.407.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線8.某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種9.集合,,則()A. B. C. D.10.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.11.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件12.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數是______.14.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.15.設是等比數列的前項的和,成等差數列,則的值為_____.16.已知函數,若的最小值為,則實數的取值范圍是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數()的最小值為.(1)求的值;(2)若,,為正實數,且,證明:.18.(12分)已知函數.(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關于的方程根的個數.19.(12分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.20.(12分)如圖,在正四棱錐中,,,為上的四等分點,即.(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值.21.(12分)已知不等式對于任意的恒成立.(1)求實數m的取值范圍;(2)若m的最大值為M,且正實數a,b,c滿足.求證.22.(10分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統(tǒng)計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.2、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.3、C【解析】
將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.4、B【解析】
根據題意可得,利用向量的數量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數量積求夾角,需掌握向量數量積的定義求法,屬于基礎題.5、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.6、B【解析】
,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.7、C【解析】
充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.8、B【解析】
分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執(zhí)行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.9、A【解析】
解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.10、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.11、B【解析】
求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.12、C【解析】
根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將原式展開成,發(fā)現中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數,是.故答案為:-40【點睛】本題考查二項式定理性質,關鍵是先展開再利用排列組合思想解決,屬于基礎題.14、【解析】令直線:,與橢圓方程聯立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數法:若題目的條件和結論能體現一種明確的函數,則可首先建立起目標函數,再求這個函數的最值,求函數最值的常用方法有配方法,判別式法,重要不等式及函數的單調性法等.15、2【解析】
設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.16、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數,要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數的最值問題,對每段函數先進行分類討論,找到每段的最小值,然后再對兩段函數的最小值進行比較,得到結果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)分類討論,去絕對值求出函數的解析式,根據一次函數的性質,得出的單調性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當時,單調遞減;當時,單調遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數,所以.當且僅當,即,,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應用,還運用“乘1法”和分類討論思想,屬于中檔題.18、(Ⅰ);(Ⅱ)見解析【解析】
(Ⅰ)求函數的導數,利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結合導數的幾何意義進行求解即可;(Ⅱ)利用參數法分離法得到,構造函數求出函數的導數研究函數的單調性和最值,利用數形結合轉化為圖象交點個數進行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設,則,所以在上是增函數,在上是減函數,故,所以,所以,設,則,所以在上是減函數,上是增函數,所以,所以當時,,函數在是減函數,當時,,函數在是增函數,因為時,,,,所以當時,方程無實數根,當時,方程有兩個不相等實數根,當或時,方程有1個實根.【點睛】本題考查函數中由極值點求參,導數的幾何意義,還考查了利用導數研究方程根的個數問題,屬于難題.19、(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數求導,結合已知及導數的幾何意義可求,結合單調性即可求解函數的極值點及極值;令,問題可轉化為求解函數的最值,結合導數可求.【詳解】(1)由題得函數的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調遞增.令,得∴在上單調遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調遞增又,∴在上恒成立∴在上恒成立∴,即∴【點睛】本題考查了利用導數研究函數的極值問題,考查利用導數證明不等式,意在考查學生對這些知識的理解掌握水平,屬于中檔題.20、(1)答案見解析.(2)【解析】
(1)根據題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以為原點建立直角坐標系,求出面的法向量為,的法向量為,利用空間向量的數量積即可求解.【詳解】(1)由由因為是正四棱錐,故于是,由余弦定理,在中,設再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以為原點建立直角坐標系,如圖:則設面的法向量為,的法向量為則,取于是,二面角的余弦值為:【點睛】本題考查了面面垂直的判定定理、空間向量法求二面角,屬于基礎題.21、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數,且時為增函數,由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度防火門綠色建筑認證合同2篇
- 二零二五版海上貨物運輸合同適用范圍與船舶建造合同3篇
- 二零二五版全方位房產及土地使用權買賣合同3篇
- 二零二五年電商代運營用戶運營與社區(qū)建設合同3篇
- 二零二五年電子商務平臺店長勞動合同規(guī)定2篇
- 二零二五年電子商務平臺安全風險評估與管理咨詢合同3篇
- 二零二五版寄賣合同范本:電子產品寄賣代理合同2篇
- 二零二五版共有產權房買賣合同范本6篇
- 二零二五版文化創(chuàng)意產業(yè)合伙合同規(guī)范文本3篇
- 基于二零二五年度市場趨勢的產品研發(fā)合同2篇
- GB/T 24474.1-2020乘運質量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實施方案(一)
- 高血壓患者用藥的注意事項講義課件
- 特種作業(yè)安全監(jiān)護人員培訓課件
- (完整)第15章-合成生物學ppt
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
- 常暗之廂(7規(guī)則-簡體修正)
評論
0/150
提交評論