2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷含解析_第1頁
2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷含解析_第2頁
2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷含解析_第3頁
2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷含解析_第4頁
2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濱州市鄒平雙語學校三區(qū)高考數(shù)學全真模擬密押卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.2.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.3.設不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標滿足不等式的概率為A. B.C. D.4.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.5.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.6.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.7.設命題:,,則為A., B.,C., D.,8.已知三棱柱()A. B. C. D.9.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.10.設集合,,則()A. B.C. D.11.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.12.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.15.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.16.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設數(shù)列的前項和為,求大于的最小的正整數(shù)的值.18.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.19.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數(shù),滿足?并說明理由.20.(12分)已知,,,,證明:(1);(2).21.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.22.(10分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.2、A【解析】

分段求解函數(shù)零點,數(shù)形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.3、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.4、C【解析】

根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.5、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.6、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).7、D【解析】

直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.8、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=9、C【解析】

作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識,屬于中檔題.10、D【解析】

利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.11、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎題.12、B【解析】

由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.14、【解析】

由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關鍵是根據(jù)定義作出異面直線所成的角.15、0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.16、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現(xiàn)的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數(shù)原理;1.古典概型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式18、(1)證明見解析;(2)【解析】

(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結合面面垂直的判定定理,即可證得平面⊥平面;(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質(zhì)定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論